{"title":"Principles and Applications of Two-Dimensional Semiconductor Material Devices for Reconfigurable Electronics.","authors":"Jiong Pan, Yike Zhang, Jiaju Yin, Pengwen Guo, Yi Yang, Tian-Ling Ren","doi":"10.3390/nano15030201","DOIUrl":null,"url":null,"abstract":"<p><p>With the advances in edge computing and artificial intelligence, the demands of multifunctional electronics with large area efficiency are increased. As the scaling down of the conventional transistor is restricted by physical limits, reconfigurable electronics are developed to promote the functional integration of integrated circuits. Reconfigurable electronics refer to electronics with switchable functionalities, including reconfigurable logic operation functionalities and reconfigurable responses to electrical or optical signals. Reconfigurable electronics integrate data-processing capabilities with reduced size. Two-dimensional (2D) semiconductor materials exhibit excellent modulation capabilities through electrical and optical signals, and structural designs of 2D material devices achieve versatile and switchable functionalities. 2D semiconductors have great potential to develop advanced reconfigurable electronics. Recent years witnessed the rapid development of 2D material devices for reconfigurable electronics. This work focuses on the working principles of 2D material devices used for reconfigurable electronics, discusses applications of 2D-material-based reconfigurable electronics in logic operation and artificial intelligence, and further provides a future outlook for the development of reconfigurable electronics based on 2D material devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820360/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030201","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the advances in edge computing and artificial intelligence, the demands of multifunctional electronics with large area efficiency are increased. As the scaling down of the conventional transistor is restricted by physical limits, reconfigurable electronics are developed to promote the functional integration of integrated circuits. Reconfigurable electronics refer to electronics with switchable functionalities, including reconfigurable logic operation functionalities and reconfigurable responses to electrical or optical signals. Reconfigurable electronics integrate data-processing capabilities with reduced size. Two-dimensional (2D) semiconductor materials exhibit excellent modulation capabilities through electrical and optical signals, and structural designs of 2D material devices achieve versatile and switchable functionalities. 2D semiconductors have great potential to develop advanced reconfigurable electronics. Recent years witnessed the rapid development of 2D material devices for reconfigurable electronics. This work focuses on the working principles of 2D material devices used for reconfigurable electronics, discusses applications of 2D-material-based reconfigurable electronics in logic operation and artificial intelligence, and further provides a future outlook for the development of reconfigurable electronics based on 2D material devices.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.