{"title":"Spontaneous Emission Mediated by Moiré Hyperbolic Metasurfaces.","authors":"Yuying Liu, Zhanrong Yang, Tongbiao Wang, Jianrong Yang, Tianbao Yu, Qinghua Liao","doi":"10.3390/nano15030228","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the spontaneous emission of a quantum emitter (QE) placed near the twisted hyperbolic metasurfaces (HMTSs) made of graphene strips. We demonstrate that the spontaneous emission can be enhanced distinctly due to the existence of moiré hyperbolic plasmon polaritons (HPPs) supported by the twisted HMTSs. Moreover, the spontaneous emission decay rate can be efficiently modulated by the chemical potential of graphene, the thickness of the dielectric spacer, and the twist angle between two HMTSs. The maximum spontaneous emission is achieved when topological transition occurs. The spontaneous emission will be enhanced as the thickness of the dielectric spacer increases for most cases. In particular, the twisted HMTSs make it possible to flexibly modify the spontaneous emission through the external field. The findings in this work not only extend past studies of twisted photonic structures but also have important applications in optical sensing and integrated photonics.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820464/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030228","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the spontaneous emission of a quantum emitter (QE) placed near the twisted hyperbolic metasurfaces (HMTSs) made of graphene strips. We demonstrate that the spontaneous emission can be enhanced distinctly due to the existence of moiré hyperbolic plasmon polaritons (HPPs) supported by the twisted HMTSs. Moreover, the spontaneous emission decay rate can be efficiently modulated by the chemical potential of graphene, the thickness of the dielectric spacer, and the twist angle between two HMTSs. The maximum spontaneous emission is achieved when topological transition occurs. The spontaneous emission will be enhanced as the thickness of the dielectric spacer increases for most cases. In particular, the twisted HMTSs make it possible to flexibly modify the spontaneous emission through the external field. The findings in this work not only extend past studies of twisted photonic structures but also have important applications in optical sensing and integrated photonics.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.