Rosecler S Klein, Débora A de Almeida, Ariel C de Oliveira, Elton G Bonafé, Johny P Monteiro, Roberta M Sabino, Alessandro F Martins
{"title":"<i>Iota</i>-Carrageenan/Chitosan Nanoparticles via Coacervation: Achieving Stability for Tiny Particles.","authors":"Rosecler S Klein, Débora A de Almeida, Ariel C de Oliveira, Elton G Bonafé, Johny P Monteiro, Roberta M Sabino, Alessandro F Martins","doi":"10.3390/nano15030161","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the influence of parameters such as pH condition, polyelectrolyte concentration, polymer ratio, and order of addition of the commercial polyelectrolytes chitosan and <i>iota</i>-carrageenan (ι-carrageenan) on the formation of polymeric nanoparticles in suspension (coacervates). A preliminary purification step of the polymers was essential for obtaining stable nanoparticles with small sizes as impurities, particularly metal ions that interfere with complexation, are removed by dialysis. Microparticles (13.5 μm in dry diameter) are obtained when aliquots of chitosan solution are poured into the ι-carrageenan solution. In general, an excess of chitosan results in the formation of agglomerated particles. The addition of an aliquot of ι-carrageenan solution (30 mL at 0.6 mg/mL and pH 4.0) to the chitosan solution (6.0 mL at 0.3 mg/mL and pH 4.0) leads to dispersed nanoparticles with a hydrodynamic radius of 278 ± 5 nm, a zeta potential of -31 ± 3 mV, and an average dry diameter of 45 ± 11 nm. The hydrodynamic radius increases as the pH rises. The partial deprotonation of ι-carrageenan chains enhances the interaction with water molecules, causing the particles to swell. These findings contribute to the fundamental understanding of polyelectrolyte complexation processes in aqueous suspension and provide insights for developing stable nanomaterials for potential practical applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819667/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030161","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the influence of parameters such as pH condition, polyelectrolyte concentration, polymer ratio, and order of addition of the commercial polyelectrolytes chitosan and iota-carrageenan (ι-carrageenan) on the formation of polymeric nanoparticles in suspension (coacervates). A preliminary purification step of the polymers was essential for obtaining stable nanoparticles with small sizes as impurities, particularly metal ions that interfere with complexation, are removed by dialysis. Microparticles (13.5 μm in dry diameter) are obtained when aliquots of chitosan solution are poured into the ι-carrageenan solution. In general, an excess of chitosan results in the formation of agglomerated particles. The addition of an aliquot of ι-carrageenan solution (30 mL at 0.6 mg/mL and pH 4.0) to the chitosan solution (6.0 mL at 0.3 mg/mL and pH 4.0) leads to dispersed nanoparticles with a hydrodynamic radius of 278 ± 5 nm, a zeta potential of -31 ± 3 mV, and an average dry diameter of 45 ± 11 nm. The hydrodynamic radius increases as the pH rises. The partial deprotonation of ι-carrageenan chains enhances the interaction with water molecules, causing the particles to swell. These findings contribute to the fundamental understanding of polyelectrolyte complexation processes in aqueous suspension and provide insights for developing stable nanomaterials for potential practical applications.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.