Khaled A Eltoukhy, Mohamed Fawzy Aly, Marc Sarquella, Concepción Langreo, Mohamed Serry
{"title":"Fabrication and Optimization of Additively Manufactured Hybrid Nanogenerators for Wearable Devices.","authors":"Khaled A Eltoukhy, Mohamed Fawzy Aly, Marc Sarquella, Concepción Langreo, Mohamed Serry","doi":"10.3390/nano15030159","DOIUrl":null,"url":null,"abstract":"<p><p>This paper aims to fabricate a hybrid piezoelectric/triboelectric nanogenerator via fusion deposition modeling as a proof of concept in the wearable device industry. The nanogenerator structure consists of a TPU/ZnO nanocomposite and an Ecoflex layer. The nanocomposite layer is fabricated using two different weight percentages (15 wt% and 20 wt%) and poled piezoelectric sheets, generating 2.63 V to 3.46 V. Variations regarding the nanogenerator's physical parameters were implemented to examine the effect on nanogenerator performance under different frequencies. The hybrid nanogenerator enabled energy harvesting for wearable devices. It was strapped on the side of the wrist to generate a potential difference with the motion of the wrist, creating a contact separation piezoelectric/triboelectric nanogenerator. Furthermore, a piezoelectric sheet was placed at the bottom of the wrist to harvest energy. The hybrid nanogenerator provided a maximum triboelectric response of 5.75 V and a maximum piezoelectric response of 2.85 V during wrist motion. The piezoelectric nanogenerator placed at the bottom of the wrist generated up to 4.78 V per wrist motion.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820456/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030159","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to fabricate a hybrid piezoelectric/triboelectric nanogenerator via fusion deposition modeling as a proof of concept in the wearable device industry. The nanogenerator structure consists of a TPU/ZnO nanocomposite and an Ecoflex layer. The nanocomposite layer is fabricated using two different weight percentages (15 wt% and 20 wt%) and poled piezoelectric sheets, generating 2.63 V to 3.46 V. Variations regarding the nanogenerator's physical parameters were implemented to examine the effect on nanogenerator performance under different frequencies. The hybrid nanogenerator enabled energy harvesting for wearable devices. It was strapped on the side of the wrist to generate a potential difference with the motion of the wrist, creating a contact separation piezoelectric/triboelectric nanogenerator. Furthermore, a piezoelectric sheet was placed at the bottom of the wrist to harvest energy. The hybrid nanogenerator provided a maximum triboelectric response of 5.75 V and a maximum piezoelectric response of 2.85 V during wrist motion. The piezoelectric nanogenerator placed at the bottom of the wrist generated up to 4.78 V per wrist motion.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.