{"title":"First-Principles Investigations of Two-Sided Functionalised MoS<sub>2</sub> Monolayer.","authors":"Sreejita Ray, Beate Paulus","doi":"10.3390/nano15030193","DOIUrl":null,"url":null,"abstract":"<p><p>In this computational study, we investigate two-sided functionalised MoS<sub>2</sub> with alkali metal atoms as donors and the organic acceptor molecule F<sub>4</sub>TCNQ as an acceptor. Characterisation of functionalised MoS<sub>2</sub> involves first-principles calculations within the density functional theory (DFT) framework with a PBE+D3 scheme to investigate the electronic structure and quantify the charge transfer in the two-sided functionalised system in comparison to the one-sided functionalised counterpart. Within the two-sided functionalised systems, there is an increase in the overall charge on MoS<sub>2</sub> as a result of stronger electron transfer from the donor to the monolayer, additionally controlled by the ability of the acceptor to receive electrons.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820476/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030193","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this computational study, we investigate two-sided functionalised MoS2 with alkali metal atoms as donors and the organic acceptor molecule F4TCNQ as an acceptor. Characterisation of functionalised MoS2 involves first-principles calculations within the density functional theory (DFT) framework with a PBE+D3 scheme to investigate the electronic structure and quantify the charge transfer in the two-sided functionalised system in comparison to the one-sided functionalised counterpart. Within the two-sided functionalised systems, there is an increase in the overall charge on MoS2 as a result of stronger electron transfer from the donor to the monolayer, additionally controlled by the ability of the acceptor to receive electrons.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.