Functionalized Optical Microcavities for Sensing Applications.

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2025-01-27 DOI:10.3390/nano15030206
Evelyn Granizo, Pavel Samokhvalov, Igor Nabiev
{"title":"Functionalized Optical Microcavities for Sensing Applications.","authors":"Evelyn Granizo, Pavel Samokhvalov, Igor Nabiev","doi":"10.3390/nano15030206","DOIUrl":null,"url":null,"abstract":"<p><p>Functionalized optical microcavities constitute an emerging highly sensitive and highly selective sensing technology. By combining optical microcavities with novel materials, microcavity sensors offer exceptional precision, unlocking considerable potential for medical diagnostics, physical and chemical analyses, and environmental monitoring. The high capabilities of functionalized microcavities enable subwavelength light detection and manipulation, facilitating the precise detection of analytes. Furthermore, recent advancements in miniaturization have paved the way for their integration into portable platforms. For leveraging the potential of microcavity sensors, it is crucial to address challenges related to the need for increasing cost-effectiveness, enhancing selectivity and sensitivity, enabling real-time measurements, and improving fabrication techniques. New strategies include the use of advanced materials, the optimization of signal processing, hybrid design approaches, and the employment of artificial intelligence. This review outlines the key strategies toward enhancing the performance of optical microcavities, highlights their broad applicability across various fields, and discusses the challenges that should be overcome to unlock their full potential.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820503/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030206","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Functionalized optical microcavities constitute an emerging highly sensitive and highly selective sensing technology. By combining optical microcavities with novel materials, microcavity sensors offer exceptional precision, unlocking considerable potential for medical diagnostics, physical and chemical analyses, and environmental monitoring. The high capabilities of functionalized microcavities enable subwavelength light detection and manipulation, facilitating the precise detection of analytes. Furthermore, recent advancements in miniaturization have paved the way for their integration into portable platforms. For leveraging the potential of microcavity sensors, it is crucial to address challenges related to the need for increasing cost-effectiveness, enhancing selectivity and sensitivity, enabling real-time measurements, and improving fabrication techniques. New strategies include the use of advanced materials, the optimization of signal processing, hybrid design approaches, and the employment of artificial intelligence. This review outlines the key strategies toward enhancing the performance of optical microcavities, highlights their broad applicability across various fields, and discusses the challenges that should be overcome to unlock their full potential.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于传感应用的功能化光学微腔。
功能化光学微腔是一种新兴的高灵敏度、高选择性传感技术。通过将光学微腔与新型材料相结合,微腔传感器提供了卓越的精度,为医疗诊断、物理和化学分析以及环境监测释放了巨大的潜力。功能化微腔的高能力使亚波长光检测和操作成为可能,有利于分析物的精确检测。此外,最近在小型化方面的进步为它们集成到便携式平台铺平了道路。为了利用微腔传感器的潜力,解决与提高成本效益、提高选择性和灵敏度、实现实时测量和改进制造技术相关的挑战至关重要。新的策略包括使用先进材料、优化信号处理、混合设计方法和使用人工智能。本文概述了提高光学微腔性能的关键策略,强调了其在各个领域的广泛适用性,并讨论了要充分发挥其潜力应克服的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
RETRACTED: Davarpanah, A. Parametric Study of Polymer-Nanoparticles-Assisted Injectivity Performance for Axisymmetric Two-Phase Flow in EOR Processes. Nanomaterials 2020, 10, 1818. Highly Efficient Conductivity Modulation via Stacked Multi-Gate Graphene Ambipolar Transistors. Insights into Growing Silica Around Monocrystalline Magnetite Nanorods Leading to Colloids with Improved Magnetic Properties-Obstacles and Solutions. MgO-Loaded Magnetic Crab Shell-Derived Biochar for Efficient Synergistic Adsorption of Heavy Metals and Dye: Characterization, Adsorption Performance and Mechanistic Study. Nanostructure and Corrosion Resistance of Plasma-Based Low-Energy Nitrogen Ion Implanted 17-4PH Martensitic Stainless Steel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1