The Role of Nanoparticles in Wine Science: Innovations and Applications.

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2025-01-23 DOI:10.3390/nano15030175
Agnieszka Mierczynska-Vasilev
{"title":"The Role of Nanoparticles in Wine Science: Innovations and Applications.","authors":"Agnieszka Mierczynska-Vasilev","doi":"10.3390/nano15030175","DOIUrl":null,"url":null,"abstract":"<p><p>Viticulture, the science of growing, cultivating, and harvesting grapes, and enology, the art and science of making wine, are rapidly evolving through innovative approaches aimed at improving the quality and efficiency of grape and wine production. This review explores the emerging use of nanoparticles, in particular gold, silver, and magnetic nanoparticles, to improve the quality, safety, and sustainability of both grape growing and winemaking processes. The unique properties of these nanoparticles, such as their small size, high surface area, and distinct chemical properties, enable them to address key challenges within the industry. In viticulture, nanoparticles have shown potential in protecting vines from pathogens, optimizing grape yield, and improving quality. In enology, nanoparticles are making a significant contribution to microbial control, reducing spoilage and refining wine analysis techniques, leading to improved product quality and safety. This review also highlights the synergy between different types of nanoparticles and their diverse applications, from microbial control in wine production to their use in innovative packaging solutions. In addition, nanoparticles have the potential to reduce dependence on agrochemicals and improve the sustainability of wine production, which is a promising avenue for future research. However, the integration of nanoparticles in viticulture and enology also poses regulatory and safety challenges, including the potential for nanoparticles to leach into wine products. Further research and regulatory advances are essential to ensure the safe and effective use of these technologies in winemaking. Overall, nanoparticles offer significant benefits to the wine industry, driving improvements in efficiency, sustainability, and quality.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819714/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030175","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Viticulture, the science of growing, cultivating, and harvesting grapes, and enology, the art and science of making wine, are rapidly evolving through innovative approaches aimed at improving the quality and efficiency of grape and wine production. This review explores the emerging use of nanoparticles, in particular gold, silver, and magnetic nanoparticles, to improve the quality, safety, and sustainability of both grape growing and winemaking processes. The unique properties of these nanoparticles, such as their small size, high surface area, and distinct chemical properties, enable them to address key challenges within the industry. In viticulture, nanoparticles have shown potential in protecting vines from pathogens, optimizing grape yield, and improving quality. In enology, nanoparticles are making a significant contribution to microbial control, reducing spoilage and refining wine analysis techniques, leading to improved product quality and safety. This review also highlights the synergy between different types of nanoparticles and their diverse applications, from microbial control in wine production to their use in innovative packaging solutions. In addition, nanoparticles have the potential to reduce dependence on agrochemicals and improve the sustainability of wine production, which is a promising avenue for future research. However, the integration of nanoparticles in viticulture and enology also poses regulatory and safety challenges, including the potential for nanoparticles to leach into wine products. Further research and regulatory advances are essential to ensure the safe and effective use of these technologies in winemaking. Overall, nanoparticles offer significant benefits to the wine industry, driving improvements in efficiency, sustainability, and quality.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米粒子在葡萄酒科学中的作用:创新与应用。
葡萄栽培学是种植、栽培和收获葡萄的科学,而酿酒学是酿造葡萄酒的艺术和科学,它们正通过旨在提高葡萄和葡萄酒生产质量和效率的创新方法迅速发展。这篇综述探讨了纳米颗粒的新兴用途,特别是金、银和磁性纳米颗粒,以提高葡萄种植和酿酒过程的质量、安全性和可持续性。这些纳米颗粒的独特性质,如小尺寸、高表面积和独特的化学性质,使它们能够解决行业中的关键挑战。在葡萄栽培中,纳米颗粒在保护葡萄免受病原体侵害、优化葡萄产量和提高质量方面显示出潜力。在酿酒学中,纳米颗粒在微生物控制、减少腐败和改进葡萄酒分析技术方面做出了重大贡献,从而提高了产品质量和安全性。这篇综述还强调了不同类型的纳米颗粒及其不同应用之间的协同作用,从葡萄酒生产中的微生物控制到它们在创新包装解决方案中的应用。此外,纳米颗粒有可能减少对农用化学品的依赖,提高葡萄酒生产的可持续性,这是未来研究的一个有希望的途径。然而,纳米颗粒在葡萄栽培和酿酒中的整合也带来了监管和安全方面的挑战,包括纳米颗粒渗入葡萄酒产品的可能性。为了确保这些技术在葡萄酒酿造中安全有效地使用,进一步的研究和监管进展是必不可少的。总的来说,纳米颗粒为葡萄酒行业提供了显著的好处,推动了效率、可持续性和质量的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Design of Lattice-Matched InAs1-xSbx/Al1-yInySb Type-I Quantum Wells with Tunable Near-To Mid-Infrared Emission (2-5 μm): A Strain-Optimized Approach for Optoelectronic Applications. Preparation Method of Upconversion Nanoparticles and Its Biological Application. Tailoring Ge Nanocrystals via Ag-Catalyzed Chemical Vapor Deposition to Enhance the Performance of Non-Volatile Memory. Tailoring the Microstructure and Properties of HiPIMS-Deposited DLC-Cr Nanocomposite Films via Chromium Doping. Multiscale Structural Modulation and Synergistic Enhancement of Transparency and Relaxor Behavior in La3+-Doped KNN Lead-Free Ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1