{"title":"Improved Selectivity of CeMnOx/Pt@SnO<sub>2</sub> Laminated MOS Sensor for Hydrogen Cyanide Under Temperature Dynamic Modulation.","authors":"Yadong Liu, Yelin Qi, Wen Yang, Tengbo Ma, Shunping Zhang, Ting Liang","doi":"10.3390/nano15030155","DOIUrl":null,"url":null,"abstract":"<p><p>Poor selectivity is one of the main bottlenecks restricting the development of metal oxide semiconductor (MOS) sensors. In this paper, using hydrogen cyanide (HCN) as the target gas, CeMnOx as the catalytic layer material and Pt@SnO<sub>2</sub> as the gas-sensitive layer material, we have proposed a scheme to improve the selectivity of a catalytic layer/gas-sensitive layer-laminated MOS sensor under dynamic temperature modulation. We tested HCN and 12 kinds of battlefield environment simulation gases, and the results showed that the CeMnOx/Pt@SnO<sub>2</sub> sensor, under the condition of temperature dynamic modulation (a constant temperature of 400 °C for the gas-sensitive layer and a variable temperature of room temperature to 400 °C for the catalytic layer; the heating and cooling rates were 200 °C/s, the highest temperature was maintained for 2 s, and the lowest temperature was maintained for 2 s), distinct characteristic peaks appeared on the G-T curves of the resistance response to HCN only. The quantification of the characteristic peaks was performed by peak heights, and the peak height of 5 mg/m<sup>3</sup> HCN was obtained up to 0.104, while the peak heights of the other gases at the same concentration were up to 0.034. The peak height of HCN was significantly higher than that of other gases, which verified the high selectivity of the sensor for HCN. Meanwhile, the sensor also showed good sensitivity, response/recovery time, stability and anti-interference for HCN under the above temperature dynamic modulation. This work provides an important reference for the selectivity improvement of MOS sensors for HCN.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030155","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Poor selectivity is one of the main bottlenecks restricting the development of metal oxide semiconductor (MOS) sensors. In this paper, using hydrogen cyanide (HCN) as the target gas, CeMnOx as the catalytic layer material and Pt@SnO2 as the gas-sensitive layer material, we have proposed a scheme to improve the selectivity of a catalytic layer/gas-sensitive layer-laminated MOS sensor under dynamic temperature modulation. We tested HCN and 12 kinds of battlefield environment simulation gases, and the results showed that the CeMnOx/Pt@SnO2 sensor, under the condition of temperature dynamic modulation (a constant temperature of 400 °C for the gas-sensitive layer and a variable temperature of room temperature to 400 °C for the catalytic layer; the heating and cooling rates were 200 °C/s, the highest temperature was maintained for 2 s, and the lowest temperature was maintained for 2 s), distinct characteristic peaks appeared on the G-T curves of the resistance response to HCN only. The quantification of the characteristic peaks was performed by peak heights, and the peak height of 5 mg/m3 HCN was obtained up to 0.104, while the peak heights of the other gases at the same concentration were up to 0.034. The peak height of HCN was significantly higher than that of other gases, which verified the high selectivity of the sensor for HCN. Meanwhile, the sensor also showed good sensitivity, response/recovery time, stability and anti-interference for HCN under the above temperature dynamic modulation. This work provides an important reference for the selectivity improvement of MOS sensors for HCN.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.