Improving Electrochemical Performance of Ultrahigh-Loading Cathodes via the Addition of Multi-Walled Carbon Nanotubes.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2025-01-21 DOI:10.3390/nano15030156
Chan Ju Choi, Tae Heon Kim, Hyun Woo Kim, Do Man Jeon, Jinhyup Han
{"title":"Improving Electrochemical Performance of Ultrahigh-Loading Cathodes via the Addition of Multi-Walled Carbon Nanotubes.","authors":"Chan Ju Choi, Tae Heon Kim, Hyun Woo Kim, Do Man Jeon, Jinhyup Han","doi":"10.3390/nano15030156","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving high energy densities in lithium-ion batteries requires advancements in electrode materials and design. This study investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) with high commercial viability as conductive additives into two types of high-nickel cathode materials, LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> and LiNi<sub>0.92</sub>Co<sub>0.07</sub>Mn<sub>0.01</sub>O<sub>2</sub>. To ensure a uniform distribution within the electrodes, MWCNTs were uniformly dispersed in the solvent using ultrasonication, the most effective and straightforward dispersion method. This enhancement improved both electronic and ionic conductivity, facilitating the formation of an efficient electron transfer network. Unlike the cells using only carbon black, the electrodes with MWCNTs exhibited lower internal resistances, facilitating higher lithium-ion diffusion. The cells with MWCNTs exhibited a capacity retention of 89.5% over their cycle life, and the cells with 2 wt% MWCNTs exhibited a superior rate capability at a high current density of 1 C. This study highlights that incorporating well-dispersed MWCNTs effectively enhances the electrochemical performance of ultrahigh-loading cathodes in lithium-ion batteries (LIBs), providing valuable insights into electrode design.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030156","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high energy densities in lithium-ion batteries requires advancements in electrode materials and design. This study investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) with high commercial viability as conductive additives into two types of high-nickel cathode materials, LiNi0.8Co0.1Mn0.1O2 and LiNi0.92Co0.07Mn0.01O2. To ensure a uniform distribution within the electrodes, MWCNTs were uniformly dispersed in the solvent using ultrasonication, the most effective and straightforward dispersion method. This enhancement improved both electronic and ionic conductivity, facilitating the formation of an efficient electron transfer network. Unlike the cells using only carbon black, the electrodes with MWCNTs exhibited lower internal resistances, facilitating higher lithium-ion diffusion. The cells with MWCNTs exhibited a capacity retention of 89.5% over their cycle life, and the cells with 2 wt% MWCNTs exhibited a superior rate capability at a high current density of 1 C. This study highlights that incorporating well-dispersed MWCNTs effectively enhances the electrochemical performance of ultrahigh-loading cathodes in lithium-ion batteries (LIBs), providing valuable insights into electrode design.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Deriving High-Energy-Density Polymeric Nitrogen N10 from the Host-Guest ArN10 Compound. Shannon Entropy in Uncertainty Quantification for the Physical Effective Parameter Computations of Some Nanofluids. Enhanced On-State Current and Stability in Heterojunction ITO/ZnO Transistors: A Mechanistic Analysis. Enhanced Persistent Luminescence from Cr3+-Doped ZnGa2O4 Nanoparticles upon Immersion in Simulated Physiological Media. Protective Effect of Carbon Dots Derived from Salvia miltiorrhiza Pretreatment in Acute Myocardial Infarction in Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1