{"title":"Instability of Oldroyd-B Liquid Films with Odd Viscosity on Porous Inclined Substrates.","authors":"Qingqin Zhou, Quansheng Liu, Ruigang Zhang, Zhaodong Ding","doi":"10.3390/nano15030244","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we investigate the effect of singular viscosity on the stability of a thin film of Oldroyd-B viscoelastic fluid flowing along a porous inclined surface under the influence of a normal electric field. First, we derive the governing equations and boundary conditions for the flow of the film and assume that the film satisfies the Beavers-Joseph sliding boundary condition when it flows on a porous inclined surface. Second, through the long-wave approximation, we derive the nonlinear interfacial evolution equation. Then, linear and nonlinear stability analyses are performed for the interfacial evolution equation. The stability analyses show that the singular viscosity has a stabilizing effect on the flow of the film, while the strain delay time of the Oldroyd-B fluid, the electric field, and the parameters of the porous medium all have an unsteady effect on the flow of the film. Interestingly, in the linear stability analysis, the parameters of the porous medium have an unsteady effect on the flow of the film after a certain value is reached and a stabilizing effect before that value is reached. In order to verify these results, we performed numerical simulations of the nonlinear evolution equations using the Fourier spectral method, and the conclusions obtained are in agreement with the results of the linear stability analysis, i.e., the amplitude of the free surface decreases progressively with time in the stable region, whereas it increases progressively with time in the unstable region.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030244","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the effect of singular viscosity on the stability of a thin film of Oldroyd-B viscoelastic fluid flowing along a porous inclined surface under the influence of a normal electric field. First, we derive the governing equations and boundary conditions for the flow of the film and assume that the film satisfies the Beavers-Joseph sliding boundary condition when it flows on a porous inclined surface. Second, through the long-wave approximation, we derive the nonlinear interfacial evolution equation. Then, linear and nonlinear stability analyses are performed for the interfacial evolution equation. The stability analyses show that the singular viscosity has a stabilizing effect on the flow of the film, while the strain delay time of the Oldroyd-B fluid, the electric field, and the parameters of the porous medium all have an unsteady effect on the flow of the film. Interestingly, in the linear stability analysis, the parameters of the porous medium have an unsteady effect on the flow of the film after a certain value is reached and a stabilizing effect before that value is reached. In order to verify these results, we performed numerical simulations of the nonlinear evolution equations using the Fourier spectral method, and the conclusions obtained are in agreement with the results of the linear stability analysis, i.e., the amplitude of the free surface decreases progressively with time in the stable region, whereas it increases progressively with time in the unstable region.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.