Emanuele Sangiorgi, Antonino Madonia, Gianmarco Laurella, Salvatore Ethan Panasci, Emanuela Schilirò, Filippo Giannazzo, Igor Píš, Federica Bondino, György Zoltán Radnóczi, Viktória Kovács-Kis, Béla Pécz, Gianpiero Buscarino, Franco Mario Gelardi, Marco Cannas, Simonpietro Agnello
{"title":"Mild Temperature Thermal Treatments of Gold-Exfoliated Monolayer MoS<sub>2</sub>.","authors":"Emanuele Sangiorgi, Antonino Madonia, Gianmarco Laurella, Salvatore Ethan Panasci, Emanuela Schilirò, Filippo Giannazzo, Igor Píš, Federica Bondino, György Zoltán Radnóczi, Viktória Kovács-Kis, Béla Pécz, Gianpiero Buscarino, Franco Mario Gelardi, Marco Cannas, Simonpietro Agnello","doi":"10.3390/nano15030160","DOIUrl":null,"url":null,"abstract":"<p><p>Monolayer molybdenum disulfide is considered an extremely promising two-dimensional material for innovative electronics due to its direct bandgap and high charge-carrier mobility. The optical and electronic properties of monolayer MoS<sub>2</sub> can, however, be strongly influenced by the specific synthesis route, posing challenges for industrial-scale production. In this study, we investigated the effects of moderate temperature thermal treatments under a controlled O<sub>2</sub> atmosphere on the properties of monolayer MoS<sub>2</sub> flakes. We found that the treatments can effectively tune the doping level of monolayer MoS<sub>2</sub>. Notably, 225 °C was identified as the optimal temperature for enhancing its optical emission properties. Our findings suggest that the removal of sulfur vacancies and impurities underlies these effects, demonstrating a promising approach for tuning the properties of monolayer MoS<sub>2</sub> at mild temperatures.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030160","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Monolayer molybdenum disulfide is considered an extremely promising two-dimensional material for innovative electronics due to its direct bandgap and high charge-carrier mobility. The optical and electronic properties of monolayer MoS2 can, however, be strongly influenced by the specific synthesis route, posing challenges for industrial-scale production. In this study, we investigated the effects of moderate temperature thermal treatments under a controlled O2 atmosphere on the properties of monolayer MoS2 flakes. We found that the treatments can effectively tune the doping level of monolayer MoS2. Notably, 225 °C was identified as the optimal temperature for enhancing its optical emission properties. Our findings suggest that the removal of sulfur vacancies and impurities underlies these effects, demonstrating a promising approach for tuning the properties of monolayer MoS2 at mild temperatures.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.