{"title":"Molecularly Imprinted Nanozymes for Selective Hydrolysis of Aromatic Carbonates Under Mild Conditions.","authors":"Tien Tan Bui, Yan Zhao","doi":"10.3390/nano15030169","DOIUrl":null,"url":null,"abstract":"<p><p>Aliphatic polycarbonate (PC) can be readily hydrolyzed by lipase, but bisphenol A-derived PC (i.e., BPA-PC) lacks enzyme catalysts for their efficient hydrolysis due to the high hydrophobicity and rigidity of its polymer backbone. This study aims to develop an artificial nanozyme for the selective hydrolysis of small-molecule aromatic carbonates as model substrates for BPA-PC. The catalyst is prepared through molecular imprinting of cross-linkable micelles in a one-pot reaction using a thiourea template and a zinc-containing functional monomer. The resulting water-soluble nanoparticle resembles a hydrolytic metalloenzyme to bind the appropriately shaped aromatic carbonate substrate in the active site, with the nearby zinc acting as a cofactor to activate a water molecule for the nucleophilic attack on the carbonate. Catalytic hydrolysis is observed at room temperature and pH 7, with a rate acceleration of 1 × 10<sup>6</sup> for diphenyl carbonate.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030169","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aliphatic polycarbonate (PC) can be readily hydrolyzed by lipase, but bisphenol A-derived PC (i.e., BPA-PC) lacks enzyme catalysts for their efficient hydrolysis due to the high hydrophobicity and rigidity of its polymer backbone. This study aims to develop an artificial nanozyme for the selective hydrolysis of small-molecule aromatic carbonates as model substrates for BPA-PC. The catalyst is prepared through molecular imprinting of cross-linkable micelles in a one-pot reaction using a thiourea template and a zinc-containing functional monomer. The resulting water-soluble nanoparticle resembles a hydrolytic metalloenzyme to bind the appropriately shaped aromatic carbonate substrate in the active site, with the nearby zinc acting as a cofactor to activate a water molecule for the nucleophilic attack on the carbonate. Catalytic hydrolysis is observed at room temperature and pH 7, with a rate acceleration of 1 × 106 for diphenyl carbonate.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.