Mengyu Su, Yi Yang, Caicai Lin, Wenjun Liu, Xuesen Chen
{"title":"WRKY transcription factor MdWRKY71 regulates flowering time in apple.","authors":"Mengyu Su, Yi Yang, Caicai Lin, Wenjun Liu, Xuesen Chen","doi":"10.1007/s11103-024-01544-8","DOIUrl":null,"url":null,"abstract":"<p><p>In plants, flowering is crucial to reproductive success. Receiving limited attention in apple research is the function of WRKY transcription factors in regulating flowering time. We characterized a WRKY transcription factor, MdWRKY71, from red-fleshed apple in this study, and ectopically expressed it in Arabidopsis thaliana, which revealed its role in flowering. The sequence of MdWRKY71 exhibited similarity to that of AtWRKY71, and its protein comprised a WRKY domain and a C<sub>2</sub>H<sub>2</sub> zinc finger-like motif, placing it within subgroup IIc of the WRKY family. The similar changing trends demonstrated a significant positive correlation between the expression level of MdWRKY71 and the key flower transition genes in apical buds of apple in flower transition stage. Overexpression of MdWRKY71 promoted the upregulation of certain flower transition genes in apple calli. The ectopic expression of MdWRKY71 in A. thaliana was observed to induce early flowering. Additionally, MdWRKY71 could bind to the promoters of several floral pathway integrators directly and interact with them to enhance their expression levels. These results contribute to our understanding of the molecular mechanism through which MdWRKY71 regulates the flowering process in fruit trees, such as red-fleshed apple.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 2","pages":"32"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-024-01544-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In plants, flowering is crucial to reproductive success. Receiving limited attention in apple research is the function of WRKY transcription factors in regulating flowering time. We characterized a WRKY transcription factor, MdWRKY71, from red-fleshed apple in this study, and ectopically expressed it in Arabidopsis thaliana, which revealed its role in flowering. The sequence of MdWRKY71 exhibited similarity to that of AtWRKY71, and its protein comprised a WRKY domain and a C2H2 zinc finger-like motif, placing it within subgroup IIc of the WRKY family. The similar changing trends demonstrated a significant positive correlation between the expression level of MdWRKY71 and the key flower transition genes in apical buds of apple in flower transition stage. Overexpression of MdWRKY71 promoted the upregulation of certain flower transition genes in apple calli. The ectopic expression of MdWRKY71 in A. thaliana was observed to induce early flowering. Additionally, MdWRKY71 could bind to the promoters of several floral pathway integrators directly and interact with them to enhance their expression levels. These results contribute to our understanding of the molecular mechanism through which MdWRKY71 regulates the flowering process in fruit trees, such as red-fleshed apple.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.