Setd2 overexpression rescues bivalent gene expression during SCNT-mediated ZGA.

IF 13.6 1区 生物学 Q1 CELL BIOLOGY Protein & Cell Pub Date : 2025-02-13 DOI:10.1093/procel/pwaf010
Xiaolei Zhang, Ruimin Xu, Yuyan Zhao, Yijia Yang, Qi Shi, Hong Wang, Xiaoyu Liu, Shaorong Gao, Chong Li
{"title":"Setd2 overexpression rescues bivalent gene expression during SCNT-mediated ZGA.","authors":"Xiaolei Zhang, Ruimin Xu, Yuyan Zhao, Yijia Yang, Qi Shi, Hong Wang, Xiaoyu Liu, Shaorong Gao, Chong Li","doi":"10.1093/procel/pwaf010","DOIUrl":null,"url":null,"abstract":"<p><p>Successful cloning through somatic cell nuclear transfer (SCNT) faces significant challenges due to epigenetic obstacles. Recent studies have highlighted the roles of H3K4me3 and H3K27me3 as potential contributors to these obstacles. However, the underlying mechanisms remain largely unclear. In this study, we generated genome-wide maps of H3K4me3 and H3K27me3 in mouse pre-implantation NT embryos. Our analysis revealed aberrantly over-represented broad H3K4me3 domain and H3K27me3 signal lead to increased bivalent marks at gene promoters in NT embryos compared with naturally fertilized (NF) embryos at the 2-cell stage, which may link to relatively low levels of H3K36me3 in NT 2-cell embryos. Notably, the overexpression of Setd2, a H3K36me3 methyltransferase, successfully restored multiple epigenetic marks, including H3K36me3, H3K4me3 and H3K27me3. Additionally, it reinstated the expression levels of ZGA-related genes by re-establishing H3K36me3 at gene body regions, which excluded H3K27me3 from bivalent promoters, ultimately improving cloning efficiency. These findings highlight the excessive bivalent state at gene promoters as a potent barrier and emphasize the removal of these barriers as a promising approach for achieving higher cloning efficiency.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein & Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/procel/pwaf010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Successful cloning through somatic cell nuclear transfer (SCNT) faces significant challenges due to epigenetic obstacles. Recent studies have highlighted the roles of H3K4me3 and H3K27me3 as potential contributors to these obstacles. However, the underlying mechanisms remain largely unclear. In this study, we generated genome-wide maps of H3K4me3 and H3K27me3 in mouse pre-implantation NT embryos. Our analysis revealed aberrantly over-represented broad H3K4me3 domain and H3K27me3 signal lead to increased bivalent marks at gene promoters in NT embryos compared with naturally fertilized (NF) embryos at the 2-cell stage, which may link to relatively low levels of H3K36me3 in NT 2-cell embryos. Notably, the overexpression of Setd2, a H3K36me3 methyltransferase, successfully restored multiple epigenetic marks, including H3K36me3, H3K4me3 and H3K27me3. Additionally, it reinstated the expression levels of ZGA-related genes by re-establishing H3K36me3 at gene body regions, which excluded H3K27me3 from bivalent promoters, ultimately improving cloning efficiency. These findings highlight the excessive bivalent state at gene promoters as a potent barrier and emphasize the removal of these barriers as a promising approach for achieving higher cloning efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由于表观遗传障碍,通过体细胞核移植(SCNT)成功克隆面临重大挑战。最近的研究强调了 H3K4me3 和 H3K27me3 的作用,认为它们是造成这些障碍的潜在因素。然而,其潜在机制在很大程度上仍不清楚。在这项研究中,我们生成了小鼠植入前 NT 胚胎中 H3K4me3 和 H3K27me3 的全基因组图谱。我们的分析发现,与2细胞期的自然受精(NF)胚胎相比,NT胚胎中H3K4me3宽域和H3K27me3信号的异常过度呈现导致基因启动子上的二价标记增加,这可能与NT 2细胞胚胎中H3K36me3水平相对较低有关。值得注意的是,H3K36me3甲基转移酶Setd2的过表达成功恢复了多种表观遗传标记,包括H3K36me3、H3K4me3和H3K27me3。此外,它还通过在基因体区域重建 H3K36me3 恢复了 ZGA 相关基因的表达水平,从而将 H3K27me3 从二价启动子中排除,最终提高了克隆效率。这些发现凸显了基因启动子的过度二价状态是一种有效的障碍,并强调消除这些障碍是实现更高克隆效率的一种可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein & Cell
Protein & Cell CELL BIOLOGY-
CiteScore
24.00
自引率
0.90%
发文量
1029
审稿时长
6-12 weeks
期刊介绍: Protein & Cell is a monthly, peer-reviewed, open-access journal focusing on multidisciplinary aspects of biology and biomedicine, with a primary emphasis on protein and cell research. It publishes original research articles, reviews, and commentaries across various fields including biochemistry, biophysics, cell biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology, and translational medicine. The journal also features content on research policies, funding trends in China, and serves as a platform for academic exchange among life science researchers.
期刊最新文献
Setd2 overexpression rescues bivalent gene expression during SCNT-mediated ZGA. Correction to: Advances in gene and cellular therapeutic approaches for Huntington's disease. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Lcn2 secreted by macrophages through NLRP3 signaling pathway induced severe pneumonia. RADICAL: a rationally designed ion channel activated by ligand for chemogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1