Construction of tetravalent bispecific Tandab (CD3/BCMA)-secreting human umbilical cord mesenchymal stem cells and its efficiency in the treatment of multiple myeloma.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cell Research & Therapy Pub Date : 2025-02-12 DOI:10.1186/s13287-025-04212-w
Mengshang Xiong, Chunfang Kong, Yang Lu, Jiaojun Liu, Weirong Ding, Tingting Zhang, Wei Zuo, Lixia Cao, Qiling Lu, Anna Li, Chaoyu Li, Liting Ding, Yutao Yan, Bo Ke, Caishui Wan
{"title":"Construction of tetravalent bispecific Tandab (CD3/BCMA)-secreting human umbilical cord mesenchymal stem cells and its efficiency in the treatment of multiple myeloma.","authors":"Mengshang Xiong, Chunfang Kong, Yang Lu, Jiaojun Liu, Weirong Ding, Tingting Zhang, Wei Zuo, Lixia Cao, Qiling Lu, Anna Li, Chaoyu Li, Liting Ding, Yutao Yan, Bo Ke, Caishui Wan","doi":"10.1186/s13287-025-04212-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Highly efficient targeted therapy is urgently needed for multiple myeloma (MM). Mesenchymal stem cells (MSCs) are an attractive candidate of cell-based, targeted therapy due to their inherent tumor tropism. However, there is still no MSCs-based tandem diabody for treating MM.</p><p><strong>Methods: </strong>Here, we designed a dual-target therapeutic system in which human umbilical cord MSCs (UCMSCs) were engineered to produce and deliver Tandab (CD3/BCMA), a tetravalent bispecific tandem diabody with two binding sites for CD3 and two for B-cell maturation antigen (BCMA). Western blot and flow cytometry were used to confirm the lentivirus-mediated construction of UCMSCs for diabody expression. The tropism of MSCs towards H929 cells in vitro was determined by migration assays, and the in vivo homing capacity of MSCs was analyzed by immunofluorescence staining. The activation and antitumor efficacy of human T cells mediated by MSCs secreting Tandab (CD3/BCMA) were evaluated in vitro. Finally, an MM xenograft NOD/SCID mouse model was established to investigate the therapeutic effect in vivo.</p><p><strong>Results: </strong>We successfully constructed MSCs that can continuously secrete bioactive Tandab (CD3/BCMA), whereby lentiviral transduction did not affect the morphology, proliferation, and lineage differentiation potential of the MSCs. The tropism of MSC-Tandab for MM was verified both in vitro and in vivo. Furthermore, MSC-Tandab promoted the expansion and activation of primary human T cells and induced healthy donor T cells to selectively eliminate BCMA-positive cell lines and primary blasts from patients but not BCMA-negative cells. A similar ability was also observed in the patient-derived T cells. Finally, MSC-Tandab significantly alleviated the MM xenograft tumor burden in NOD/SCID mice without toxic side effects in vivo, whereby the cytokine levels (IFN-γ) in the peripheral blood (PB) were higher in the MSC-Tandab group, and the tumor infiltration of T cells was significantly enhanced.</p><p><strong>Conclusions: </strong>These results suggest that UCMSCs releasing Tandab (CD3/BCMA) are a promising new tool for the treatment of MM, opening a new avenue for the development of cell-based therapy.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"69"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04212-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Highly efficient targeted therapy is urgently needed for multiple myeloma (MM). Mesenchymal stem cells (MSCs) are an attractive candidate of cell-based, targeted therapy due to their inherent tumor tropism. However, there is still no MSCs-based tandem diabody for treating MM.

Methods: Here, we designed a dual-target therapeutic system in which human umbilical cord MSCs (UCMSCs) were engineered to produce and deliver Tandab (CD3/BCMA), a tetravalent bispecific tandem diabody with two binding sites for CD3 and two for B-cell maturation antigen (BCMA). Western blot and flow cytometry were used to confirm the lentivirus-mediated construction of UCMSCs for diabody expression. The tropism of MSCs towards H929 cells in vitro was determined by migration assays, and the in vivo homing capacity of MSCs was analyzed by immunofluorescence staining. The activation and antitumor efficacy of human T cells mediated by MSCs secreting Tandab (CD3/BCMA) were evaluated in vitro. Finally, an MM xenograft NOD/SCID mouse model was established to investigate the therapeutic effect in vivo.

Results: We successfully constructed MSCs that can continuously secrete bioactive Tandab (CD3/BCMA), whereby lentiviral transduction did not affect the morphology, proliferation, and lineage differentiation potential of the MSCs. The tropism of MSC-Tandab for MM was verified both in vitro and in vivo. Furthermore, MSC-Tandab promoted the expansion and activation of primary human T cells and induced healthy donor T cells to selectively eliminate BCMA-positive cell lines and primary blasts from patients but not BCMA-negative cells. A similar ability was also observed in the patient-derived T cells. Finally, MSC-Tandab significantly alleviated the MM xenograft tumor burden in NOD/SCID mice without toxic side effects in vivo, whereby the cytokine levels (IFN-γ) in the peripheral blood (PB) were higher in the MSC-Tandab group, and the tumor infiltration of T cells was significantly enhanced.

Conclusions: These results suggest that UCMSCs releasing Tandab (CD3/BCMA) are a promising new tool for the treatment of MM, opening a new avenue for the development of cell-based therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
期刊最新文献
Construction of tetravalent bispecific Tandab (CD3/BCMA)-secreting human umbilical cord mesenchymal stem cells and its efficiency in the treatment of multiple myeloma. Pericyte-derived extracellular vesicles improve vascular barrier function in sepsis via the Angpt1/PI3K/AKT pathway and pericyte recruitment: an in vivo and in vitro study. Pyroptosis: candidate key targets for mesenchymal stem cell-derived exosomes for the treatment of bone-related diseases. Therapeutic potential of exosomal lncRNAs derived from stem cells in wound healing: focusing on mesenchymal stem cells. Induction of the p21/CDK6 pathway and alteration of the immune microenvironment by the stem cell marker CBX3 in melanoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1