An improved decision tree model through hyperparameter optimization using a modified gray wolf optimization for diabetes classification.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Methods in Biomechanics and Biomedical Engineering Pub Date : 2025-02-13 DOI:10.1080/10255842.2025.2460178
Muhammad Sam'an, Farikhin, Muhammad Munsarif
{"title":"An improved decision tree model through hyperparameter optimization using a modified gray wolf optimization for diabetes classification.","authors":"Muhammad Sam'an, Farikhin, Muhammad Munsarif","doi":"10.1080/10255842.2025.2460178","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is a chronic condition that affects blood sugar levels and vital organs in the body. Early detection is crucial given the increasing global prevalence of diabetes and the grave risk of complications if not properly managed. Thus, a good prediction system is necessary. Although the Decision Tree (DT) is commonly used for classification, it is less effective with large datasets. We propose hyperparameter optimization of the DT using the Grey Wolf Optimization (GWO), which has exploration and both exploitation capabilities. However, the limited search space of GWO may hinder practical exploration and exploitation, leading to premature optimization. To address this, we propose a modified GWO (MGWO) by adding the Levy distribution function to enhance the movements of alpha, beta, and delta wolves. We also provide GA (Genetic Algorithm) as a comparative algorithm. The fitness value of MGWO is 0.8498, surpassing GWO (0.8373) and GA (0.8492). Evaluation results indicate that MGWO and GA yield similar and superior accuracy compared to GWO. The proposed method outperforms existing ones. Further research is needed to evaluate the impact of varying the number of wolves on optimization performance and classification accuracy.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-17"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2460178","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes is a chronic condition that affects blood sugar levels and vital organs in the body. Early detection is crucial given the increasing global prevalence of diabetes and the grave risk of complications if not properly managed. Thus, a good prediction system is necessary. Although the Decision Tree (DT) is commonly used for classification, it is less effective with large datasets. We propose hyperparameter optimization of the DT using the Grey Wolf Optimization (GWO), which has exploration and both exploitation capabilities. However, the limited search space of GWO may hinder practical exploration and exploitation, leading to premature optimization. To address this, we propose a modified GWO (MGWO) by adding the Levy distribution function to enhance the movements of alpha, beta, and delta wolves. We also provide GA (Genetic Algorithm) as a comparative algorithm. The fitness value of MGWO is 0.8498, surpassing GWO (0.8373) and GA (0.8492). Evaluation results indicate that MGWO and GA yield similar and superior accuracy compared to GWO. The proposed method outperforms existing ones. Further research is needed to evaluate the impact of varying the number of wolves on optimization performance and classification accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
期刊最新文献
Functionally graded stem optimizes the fixed and sliding surface coupling mechanism. Towards a radiation free numerical modelling framework to predict spring assisted correction of scaphocephaly. A physiologically enhanced muscle spindle model: using a Hill-type model for extrafusal fibers as template for intrafusal fibers. Modeling and simulation credibility assessments of whole-body finite element computational models for use in NASA extravehicular activity applications. A fractional modeling approach for the transmission dynamics of measles with double-dose vaccination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1