{"title":"SCRaMbLE: a versatile tool for genome manipulation.","authors":"Li Cheng, Jielin Li, Yaojun Chen, Junbiao Dai","doi":"10.1152/physiol.00049.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic rearrangements play an important role in shaping genetic diversity, as they enable the generation of novel structural variations through specific genome manipulation tools. These variations contribute to phenotypic differences among individuals within a population, thereby serving as the foundation for natural selection and driving evolutionary processes. In recent years, Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) has emerged as a promising tool for studying genomic rearrangements. SCRaMbLE utilizes site-specific recombination mediated by loxPsym sites to induce targeted chromosomal rearrangements in yeast cells. In this review, we provide a comprehensive overview of recent advancements in optimization strategies of the SCRaMbLE system and discuss influential factors that affect its performance based on recent research findings. We demonstrate how the SCRaMbLE system can be employed for pathway engineering, phenotype improvement, genome minimization, and dissection of genotype-to-phenotype relationships. We highlight both the advantages and challenges associated with SCRaMbLE and envision its potential applications beyond yeast genetics.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physiol.00049.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genomic rearrangements play an important role in shaping genetic diversity, as they enable the generation of novel structural variations through specific genome manipulation tools. These variations contribute to phenotypic differences among individuals within a population, thereby serving as the foundation for natural selection and driving evolutionary processes. In recent years, Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) has emerged as a promising tool for studying genomic rearrangements. SCRaMbLE utilizes site-specific recombination mediated by loxPsym sites to induce targeted chromosomal rearrangements in yeast cells. In this review, we provide a comprehensive overview of recent advancements in optimization strategies of the SCRaMbLE system and discuss influential factors that affect its performance based on recent research findings. We demonstrate how the SCRaMbLE system can be employed for pathway engineering, phenotype improvement, genome minimization, and dissection of genotype-to-phenotype relationships. We highlight both the advantages and challenges associated with SCRaMbLE and envision its potential applications beyond yeast genetics.
期刊介绍:
Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.