The link between sarcopenic obesity and Alzheimer's disease: a brain-derived neurotrophic factor point of view.

IF 4.7 2区 医学 Q1 NEUROSCIENCES Journal of Physiology-London Pub Date : 2025-02-12 DOI:10.1113/JP288032
Emily N Copeland, Paul J LeBlanc, Paula Duarte-Guterman, Val A Fajardo, Rebecca E K MacPherson
{"title":"The link between sarcopenic obesity and Alzheimer's disease: a brain-derived neurotrophic factor point of view.","authors":"Emily N Copeland, Paul J LeBlanc, Paula Duarte-Guterman, Val A Fajardo, Rebecca E K MacPherson","doi":"10.1113/JP288032","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related diseases are becoming more prominent as the lifespan of the global population rises. Many of these diseases coincide with each other and can even influence the onset of additional comorbidities. Sarcopenic obesity is described as age-related loss of muscle mass that concurs with excessive weight gain and tends to increase the risk of comorbidity development, including Alzheimer's disease (AD). Though the exact link between sarcopenic obesity and AD is not known, this review explores the possibility that reduced levels of brain-derived neurotrophic factor (BDNF) throughout the body may serve as the underlying commonality. In AD, reductions in BDNF signalling through its receptor promote the activation of glycogen synthase kinase 3 beta (GSK3β), which subsequently increases the production of amyloid beta (Aβ) peptides and neurofibrillary tangles (NFTs). In the skeletal muscle, lower BDNF concentrations are linked to impaired muscle fibre repair and regeneration, increasing the likelihood of sarcopenia. Furthermore, the absence of BDNF impairs mitochondrial function, leading to insulin resistance and increased adiposity. BDNF concentration has a negative relationship with obesogenic markers in adipose tissue, and as such, lower concentrations of BDNF lead to weight gain. Collectively, current literature suggests that BDNF attenuates AD pathology while improving skeletal muscle mitochondrial function, whole-body insulin resistance and facilitating adipocyte browning. Therefore, BDNF may be a viable target for multiple age-related diseases, but more research is required to substantiate this claim, with a particular focus on examining any potential influence of biological sex, as women are at a higher risk for both AD and sarcopenic obesity.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP288032","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Age-related diseases are becoming more prominent as the lifespan of the global population rises. Many of these diseases coincide with each other and can even influence the onset of additional comorbidities. Sarcopenic obesity is described as age-related loss of muscle mass that concurs with excessive weight gain and tends to increase the risk of comorbidity development, including Alzheimer's disease (AD). Though the exact link between sarcopenic obesity and AD is not known, this review explores the possibility that reduced levels of brain-derived neurotrophic factor (BDNF) throughout the body may serve as the underlying commonality. In AD, reductions in BDNF signalling through its receptor promote the activation of glycogen synthase kinase 3 beta (GSK3β), which subsequently increases the production of amyloid beta (Aβ) peptides and neurofibrillary tangles (NFTs). In the skeletal muscle, lower BDNF concentrations are linked to impaired muscle fibre repair and regeneration, increasing the likelihood of sarcopenia. Furthermore, the absence of BDNF impairs mitochondrial function, leading to insulin resistance and increased adiposity. BDNF concentration has a negative relationship with obesogenic markers in adipose tissue, and as such, lower concentrations of BDNF lead to weight gain. Collectively, current literature suggests that BDNF attenuates AD pathology while improving skeletal muscle mitochondrial function, whole-body insulin resistance and facilitating adipocyte browning. Therefore, BDNF may be a viable target for multiple age-related diseases, but more research is required to substantiate this claim, with a particular focus on examining any potential influence of biological sex, as women are at a higher risk for both AD and sarcopenic obesity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
期刊最新文献
Issue Information Early sensorimotor restriction in rats induces age-dependent mitochondrial alterations in skeletal muscles and brain structures. Feasibility of multimodal magnetic resonance imaging to assess maternal hyperoxygenation in sheep pregnancy. Intracellular signalling in arterial chemoreceptors during acute hypoxia and glucose deprivation: role of ATP. The link between sarcopenic obesity and Alzheimer's disease: a brain-derived neurotrophic factor point of view.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1