Biomedical applications ofBombyx morisilk in skin regeneration and cutaneous wound healing.

Mohammad Hossein Khosropanah, Alireza Ghofrani, Mahdi Alizadeh Vaghasloo, Mazyar Zahir, Afshin Bahrami, Ashkan Azimzadeh, Zahra Hassannejad, Masoumeh Majidi Zolbin
{"title":"Biomedical applications of<i>Bombyx mori</i>silk in skin regeneration and cutaneous wound healing.","authors":"Mohammad Hossein Khosropanah, Alireza Ghofrani, Mahdi Alizadeh Vaghasloo, Mazyar Zahir, Afshin Bahrami, Ashkan Azimzadeh, Zahra Hassannejad, Masoumeh Majidi Zolbin","doi":"10.1088/1748-605X/adb552","DOIUrl":null,"url":null,"abstract":"<p><p>A mere glance at the foundation of the sericulture industry to produce silk and the consequent establishment of the Silk Road to transport it; elucidates the significant role that this material has played in human history. Owing to its exceptional robustness, silk was introduced into medicine as a surgical suture approximately two millennia ago. During the last decades, silk has garnered attention as a possible source of biological-based materials that can be effectively used in regenerative medicine. Silk's unique characteristics, like its low immunogenicity, suitable adhesive properties, exceptional tensile strength, perfect hemostatic properties, adequate permeability to oxygen and water, resistance to microbial colonization, and most importantly, excellent biodegradability; make it an outstanding choice for biomedical applications. Although there are many different types of silk in nature,<i>Bombyx mori</i>(<i>B. mori</i>) silk accounts for about 90% of global production and is the most thoroughly investigated and the most commonly used. Silk fibroin (SF) and silk sericin (SS) are the two main protein constituents of silk. SF has been manufactured in various morphologic forms (e.g. hydrogels, sponges, films, etc) and has been widely used in the biomedical field, especially as a scaffold in tissue engineering. Similarly, SS has demonstrated a vast potential as a suitable biomaterial in tissue engineering and regenerative medicine. Initial studies on SF and SS as wound dressings have shown encouraging results. This review aims to comprehensively discuss the potential role of silk proteins in refining wound healing and skin regeneration.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/adb552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A mere glance at the foundation of the sericulture industry to produce silk and the consequent establishment of the Silk Road to transport it; elucidates the significant role that this material has played in human history. Owing to its exceptional robustness, silk was introduced into medicine as a surgical suture approximately two millennia ago. During the last decades, silk has garnered attention as a possible source of biological-based materials that can be effectively used in regenerative medicine. Silk's unique characteristics, like its low immunogenicity, suitable adhesive properties, exceptional tensile strength, perfect hemostatic properties, adequate permeability to oxygen and water, resistance to microbial colonization, and most importantly, excellent biodegradability; make it an outstanding choice for biomedical applications. Although there are many different types of silk in nature,Bombyx mori(B. mori) silk accounts for about 90% of global production and is the most thoroughly investigated and the most commonly used. Silk fibroin (SF) and silk sericin (SS) are the two main protein constituents of silk. SF has been manufactured in various morphologic forms (e.g. hydrogels, sponges, films, etc) and has been widely used in the biomedical field, especially as a scaffold in tissue engineering. Similarly, SS has demonstrated a vast potential as a suitable biomaterial in tissue engineering and regenerative medicine. Initial studies on SF and SS as wound dressings have shown encouraging results. This review aims to comprehensively discuss the potential role of silk proteins in refining wound healing and skin regeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gold nanoparticles/Cu decorated metal-organic frameworks for synergistic photodynamic/ferroptosis cancer therapy. Structural, microstructural, dielectric, mechanical properties of PVDF/HAP nanocomposite films for bone regeneration applications. Use of sandwich structures in biomedical applications: an innovative design for external ring fixators. Effects of zinc silicate additive on the physicochemical properties and cellular behaviors of 3D-printed magnesium phosphate bioceramic scaffolds. Enhancing osteogenic properties with gelatin/chitosan hydrogel encapsulating lithium-coated titanium oxide hollow sphere particles loaded with quercetin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1