A signal transduction blind spot: the function of adenylyl cyclase transmembrane domains.

Ryan S Dowsell, Matthew G Gold
{"title":"A signal transduction blind spot: the function of adenylyl cyclase transmembrane domains.","authors":"Ryan S Dowsell, Matthew G Gold","doi":"10.1111/febs.70022","DOIUrl":null,"url":null,"abstract":"<p><p>Signal transduction of external primary signals into intracellular elevations of the second messenger cyclic AMP is an ancient and universal regulatory mechanism in biology. In mammals, 9 of the 10 adenylyl cyclases (ACs) share a common topology that includes a large transmembrane (TM) domain assembled from two clusters of six helices. This domain accounts for ~ 35% of the coding sequence but, remarkably, its function is still an open question. In this viewpoint, we consider how the first primary AC sequences spurred ideas for the purpose of AC TM domains, including voltage-sensing and transporter functions. In the original conceptions of second messenger signalling, ACs were put forward as potential receptors, and we discuss emerging evidence in support of this function. We also consider growing evidence that cyclase TM helical bundles help to organise multiprotein signalling complexes by engaging in interactions with other membrane-embedded proteins. Cyclase TM regions are more diverse between isoforms than the catalytic domain-we conclude by considering how this might be exploited in therapeutic strategies targeting specific cyclase isoforms.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Signal transduction of external primary signals into intracellular elevations of the second messenger cyclic AMP is an ancient and universal regulatory mechanism in biology. In mammals, 9 of the 10 adenylyl cyclases (ACs) share a common topology that includes a large transmembrane (TM) domain assembled from two clusters of six helices. This domain accounts for ~ 35% of the coding sequence but, remarkably, its function is still an open question. In this viewpoint, we consider how the first primary AC sequences spurred ideas for the purpose of AC TM domains, including voltage-sensing and transporter functions. In the original conceptions of second messenger signalling, ACs were put forward as potential receptors, and we discuss emerging evidence in support of this function. We also consider growing evidence that cyclase TM helical bundles help to organise multiprotein signalling complexes by engaging in interactions with other membrane-embedded proteins. Cyclase TM regions are more diverse between isoforms than the catalytic domain-we conclude by considering how this might be exploited in therapeutic strategies targeting specific cyclase isoforms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A signal transduction blind spot: the function of adenylyl cyclase transmembrane domains. Functional consequences of lysine acetylation of phosphofructokinase isozymes. Crystal structure of Anopheles gambiae actin depolymerizing factor explains high affinity to monomeric actin. FXR suppress Müller cell activation by regulating cGAS/STING pathway in diabetic retinopathy. Redox imbalance and hypoxia-inducible factors: a multifaceted crosstalk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1