Characterization and Engineering of a Blue-Sensitive, Gi/o-Biased, and Bistable Ciliary Opsin from a Fan Worm.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2025-02-13 DOI:10.1021/acs.biochem.4c00754
Sachiko Fukuzawa, Tomoki Kawaguchi, Takushi Shimomura, Yoshihiro Kubo, Hisao Tsukamoto
{"title":"Characterization and Engineering of a Blue-Sensitive, Gi/o-Biased, and Bistable Ciliary Opsin from a Fan Worm.","authors":"Sachiko Fukuzawa, Tomoki Kawaguchi, Takushi Shimomura, Yoshihiro Kubo, Hisao Tsukamoto","doi":"10.1021/acs.biochem.4c00754","DOIUrl":null,"url":null,"abstract":"<p><p>Ciliary opsins (c-opsin) have been identified not only in vertebrates but also in invertebrates. An invertebrate ciliary opsin was recently identified in the fan worm <i>Acromegalomma interruptum</i> (formerly named <i>Megalomma interrupta</i>); however, its spectral and signaling characteristics are unknown. In the present study, we characterized the spectral properties and light-induced cellular signaling properties of opsin (<i>Acromegalomma</i> invertebrate ciliary opsin (<i>Acr</i>InvC-opsin)). <i>Acr</i>InvC-opsin showed an absorption maximum at 464 nm, and upon blue light absorption, the spectrum was red-shifted by approximately 50 nm. The two states are interconvertible by illumination with blue and orange light. Blue light illumination of <i>Acr</i>InvC-opsin caused specific coupling with Gi, sustained Gi dissociation, decreased intracellular cAMP levels, and the activation of GIRK channels. The cellular responses by the activated opsin were partially terminated by orange light illumination. These light-dependent responses indicate that InvC-opsin is a typical bistable pigment wherein the resting and activated states can be interconverted by visible light illumination. We also attempted to modulate the spectral and functional properties of <i>Acr</i>InvC-opsin by using site-directed mutagenesis. Substitution of Ser-94 with Ala caused little spectral shift in the resting state but a further red shift of ∼10 nm in the activated state, indicating that the absorption spectra of the two states were tuned differently. In contrast, the substitution of S94A did not significantly affect the light-dependent signaling properties of <i>Acr</i>InvC-opsin. Because <i>Acr</i>InvC-opsin is a blue-sensitive, Gi/o-biased, and bistable pigment, it has the potential to serve as an optical control tool to specifically and reversibly regulate Gi/o-dependent signaling pathways by visible light.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00754","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ciliary opsins (c-opsin) have been identified not only in vertebrates but also in invertebrates. An invertebrate ciliary opsin was recently identified in the fan worm Acromegalomma interruptum (formerly named Megalomma interrupta); however, its spectral and signaling characteristics are unknown. In the present study, we characterized the spectral properties and light-induced cellular signaling properties of opsin (Acromegalomma invertebrate ciliary opsin (AcrInvC-opsin)). AcrInvC-opsin showed an absorption maximum at 464 nm, and upon blue light absorption, the spectrum was red-shifted by approximately 50 nm. The two states are interconvertible by illumination with blue and orange light. Blue light illumination of AcrInvC-opsin caused specific coupling with Gi, sustained Gi dissociation, decreased intracellular cAMP levels, and the activation of GIRK channels. The cellular responses by the activated opsin were partially terminated by orange light illumination. These light-dependent responses indicate that InvC-opsin is a typical bistable pigment wherein the resting and activated states can be interconverted by visible light illumination. We also attempted to modulate the spectral and functional properties of AcrInvC-opsin by using site-directed mutagenesis. Substitution of Ser-94 with Ala caused little spectral shift in the resting state but a further red shift of ∼10 nm in the activated state, indicating that the absorption spectra of the two states were tuned differently. In contrast, the substitution of S94A did not significantly affect the light-dependent signaling properties of AcrInvC-opsin. Because AcrInvC-opsin is a blue-sensitive, Gi/o-biased, and bistable pigment, it has the potential to serve as an optical control tool to specifically and reversibly regulate Gi/o-dependent signaling pathways by visible light.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Sortase-Mediated Fluorescent Labeling of eIF4E for Investigating Translation Initiation Mechanisms. Issue Publication Information Issue Editorial Masthead Disruption of Molecular Interactions between the G3BP1 Stress Granule Host Protein and the Nucleocapsid (NTD-N) Protein Impedes SARS-CoV-2 Virus Replication. Alternative Role of B/b Knob-Hole Interactions in the Fibrin Assembly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1