Xiayi Zhao, Bao Wang, Kun Zhou, Jiangjiexing Wu, Kai Song
{"title":"High-Throughput Prediction of Metal-Embedded Complex Properties with a New GNN-Based Metal Attention Framework.","authors":"Xiayi Zhao, Bao Wang, Kun Zhou, Jiangjiexing Wu, Kai Song","doi":"10.1021/acs.jcim.4c02163","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-embedded complexes (MECs), including transition metal complexes (TMCs) and metal-organic frameworks (MOFs), are important in catalysis, materials science, and molecular devices due to their unique metal atom centrality and complex coordination environments. However, modeling and predicting their properties accurately is challenging. A new metal attention (MA) framework for graph neural networks (GNNs) was proposed to address the limitations of traditional methods, which fail to differentiate core coordination structures from ordinary covalent bonds. This MA framework converts heterogeneous graphs of complexes into homogeneous ones with distinct metal features by highlighting key metal-feature coordination through hierarchical pooling and a metal cross-attention. To assess its performance, 11 widely used GNN algorithms, three of which are heterogeneous, were compared. Experimental results indicate significant improvements in accuracy: an average of 32.07% for predicting TMC properties and up to 23.01% for MOF CO<sub>2</sub> absorption. Moreover, tests on the framework's robustness regarding data set size variation and comparison with a larger non-MA model show that the enhanced performance stems from the architecture, not merely increasing model capacity. The MA framework's potential in predicting metal complex properties offers a potent statistical tool for optimizing and designing new materials like catalysts and gas storage systems.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02163","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-embedded complexes (MECs), including transition metal complexes (TMCs) and metal-organic frameworks (MOFs), are important in catalysis, materials science, and molecular devices due to their unique metal atom centrality and complex coordination environments. However, modeling and predicting their properties accurately is challenging. A new metal attention (MA) framework for graph neural networks (GNNs) was proposed to address the limitations of traditional methods, which fail to differentiate core coordination structures from ordinary covalent bonds. This MA framework converts heterogeneous graphs of complexes into homogeneous ones with distinct metal features by highlighting key metal-feature coordination through hierarchical pooling and a metal cross-attention. To assess its performance, 11 widely used GNN algorithms, three of which are heterogeneous, were compared. Experimental results indicate significant improvements in accuracy: an average of 32.07% for predicting TMC properties and up to 23.01% for MOF CO2 absorption. Moreover, tests on the framework's robustness regarding data set size variation and comparison with a larger non-MA model show that the enhanced performance stems from the architecture, not merely increasing model capacity. The MA framework's potential in predicting metal complex properties offers a potent statistical tool for optimizing and designing new materials like catalysts and gas storage systems.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.