Glucose Metabolism-Targeted Poly(amino acid) Nanoformulation of Oxaliplatin(IV)-Aspirin Prodrug for Enhanced Chemo-Immunotherapy.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-02-14 DOI:10.1002/adma.202419033
Jiazhen Yang, Tianqi Su, Qinqi Wang, Run Shi, Jianxun Ding, Xuesi Chen
{"title":"Glucose Metabolism-Targeted Poly(amino acid) Nanoformulation of Oxaliplatin(IV)-Aspirin Prodrug for Enhanced Chemo-Immunotherapy.","authors":"Jiazhen Yang, Tianqi Su, Qinqi Wang, Run Shi, Jianxun Ding, Xuesi Chen","doi":"10.1002/adma.202419033","DOIUrl":null,"url":null,"abstract":"<p><p>Inappropriate glucose metabolism in cancer cells is associated with immunosuppressive tumor microenvironments (TMEs). Although glycolysis inhibition enhances T cell-mediated immune responses, the integrated platforms combining glycolysis inhibition with immunotherapy remain underdeveloped. To address this gap, a glucose metabolism-targeted poly(amino acid) nanoformulation of oxaliplatin(IV)-aspirin prodrug (NP/OXA-ASP<sub>2</sub>) is developed to improve chemo-immunotherapy by suppressing tumor glycolysis. This poly(amino acid) nanoparticle exhibits selective release, discharging 90.0% of OXA-ASP<sub>2</sub> under reductive conditions within 36 h. Furthermore, over 80% of the prodrug converts to OXA and ASP within 12 h, promoting mitochondrial damage and glycolysis inhibition, which amplifies immunogenic cell death induced by OXA. In addition, suppressing glycolytic flux reduces lactate leakage, mitigating the immunosuppressive TMEs. Together, these mechanisms contribute to stronger chemo-immunotherapy efficacy. Compared to the OXA plus ASP formulation, NP/OXA-ASP<sub>2</sub> demonstrates superior performances, reducing lactate levels at the tumor site by 25.4%, increasing the proportion of cytotoxic T lymphocytes by 1.53 times, decreasing the proportion of regulatory T cells by 2.20 times, and improving 1.39-fold of the tumor inhibition rate. These findings underscore that NP/OXA-ASP<sub>2</sub> is a promising platform for integrating tumor metabolic regulation with immunomodulation and holds significant potential for advancing clinical chemo-immunotherapy.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2419033"},"PeriodicalIF":27.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419033","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inappropriate glucose metabolism in cancer cells is associated with immunosuppressive tumor microenvironments (TMEs). Although glycolysis inhibition enhances T cell-mediated immune responses, the integrated platforms combining glycolysis inhibition with immunotherapy remain underdeveloped. To address this gap, a glucose metabolism-targeted poly(amino acid) nanoformulation of oxaliplatin(IV)-aspirin prodrug (NP/OXA-ASP2) is developed to improve chemo-immunotherapy by suppressing tumor glycolysis. This poly(amino acid) nanoparticle exhibits selective release, discharging 90.0% of OXA-ASP2 under reductive conditions within 36 h. Furthermore, over 80% of the prodrug converts to OXA and ASP within 12 h, promoting mitochondrial damage and glycolysis inhibition, which amplifies immunogenic cell death induced by OXA. In addition, suppressing glycolytic flux reduces lactate leakage, mitigating the immunosuppressive TMEs. Together, these mechanisms contribute to stronger chemo-immunotherapy efficacy. Compared to the OXA plus ASP formulation, NP/OXA-ASP2 demonstrates superior performances, reducing lactate levels at the tumor site by 25.4%, increasing the proportion of cytotoxic T lymphocytes by 1.53 times, decreasing the proportion of regulatory T cells by 2.20 times, and improving 1.39-fold of the tumor inhibition rate. These findings underscore that NP/OXA-ASP2 is a promising platform for integrating tumor metabolic regulation with immunomodulation and holds significant potential for advancing clinical chemo-immunotherapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Diluted Ternary Heterojunctions to Suppress Charge Recombination for Organic Solar Cells with 21% Efficiency Interfacial π‐Electron Cloud Extension and Charge Transfer Between Preferable Single‐Crystalline Conjugated MOFs and Graphene for Ultrafast Pulse Generation Two Material Properties from One Wavelength‐Orthogonal Photoresin Enabled by a Monochromatic Laser Integrated Stereolithographic Apparatus (Mono LISA) Polarization Boost and Ferroelectricity Down to One Unit Cell in Layered Carpy‐Galy La2Ti2O7 Thin Films Si‐CMOS Compatible Synthesis of Wafer‐Scale 1T‐CrTe2 with Step‐Like Magnetic Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1