Jiaojiao Tao, Yu Dong, Bingjie Wang, Teng Wang, Aijia Zhang, Shuang Li, Rui Chen, Yanguo Su, Tianze Jiang, Xia Zhao
{"title":"Dual Metal Nanoflower Oxygen Pump Microneedles Based on Cuproptosis and STING Pathway Activation for Cancer Immunotherapy.","authors":"Jiaojiao Tao, Yu Dong, Bingjie Wang, Teng Wang, Aijia Zhang, Shuang Li, Rui Chen, Yanguo Su, Tianze Jiang, Xia Zhao","doi":"10.1002/smll.202409187","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapy is a promising new approach for tumor treatment. However, its clinical application is hindered by insufficient immunogenicity, hypoxia, and immunosuppressive tumor microenvironment (TME). Here, oxygen pump microneedles (OPMNs) loaded with zinc-doped copper sulfide nanoflowers (ZCS NFs) and PD-L1 small interfering RNA (siPD-L1) (OPMNs-ZCS@siPD-L1) are developed for boosting tumor immunotherapy. OPMN-ZCS@siPD-L1 enhances tumor immunogenicity through ZCS NFs by inducing cuproptosis, reverses TME through siPD-L1, and promotes drug penetration, and ameliorates hypoxia through oxygen bubbles. More importantly, cuproptosis-induced mitochondrial DNA (mtDNA) together with Zn<sup>2+</sup> co-activate the STING pathway, triggering a robust immune response. OPMN-ZCS@siPD-L1 increases the sensitivity to cuproptosis and induces immunogenic cell death (ICD) in vivo and in vitro, which significantly inhibits tumor progression and metastasis. The novel strategy of \"increasing the throttle\" (cuproptopsis-mediated STING activation & ICD effect) combined with \"releasing the brake\" (PD-L1 inhibition & hypoxia improvement) provides a new approach for enhancing percutaneous tumor immunotherapy.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2409187"},"PeriodicalIF":13.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409187","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunotherapy is a promising new approach for tumor treatment. However, its clinical application is hindered by insufficient immunogenicity, hypoxia, and immunosuppressive tumor microenvironment (TME). Here, oxygen pump microneedles (OPMNs) loaded with zinc-doped copper sulfide nanoflowers (ZCS NFs) and PD-L1 small interfering RNA (siPD-L1) (OPMNs-ZCS@siPD-L1) are developed for boosting tumor immunotherapy. OPMN-ZCS@siPD-L1 enhances tumor immunogenicity through ZCS NFs by inducing cuproptosis, reverses TME through siPD-L1, and promotes drug penetration, and ameliorates hypoxia through oxygen bubbles. More importantly, cuproptosis-induced mitochondrial DNA (mtDNA) together with Zn2+ co-activate the STING pathway, triggering a robust immune response. OPMN-ZCS@siPD-L1 increases the sensitivity to cuproptosis and induces immunogenic cell death (ICD) in vivo and in vitro, which significantly inhibits tumor progression and metastasis. The novel strategy of "increasing the throttle" (cuproptopsis-mediated STING activation & ICD effect) combined with "releasing the brake" (PD-L1 inhibition & hypoxia improvement) provides a new approach for enhancing percutaneous tumor immunotherapy.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.