Design, synthesis, and biological evaluation of oxime ether derivatives containing 1,5-dimethyl-6-thioxo-1,3,5-triazinane-2,4-dione as protoporphyrinogen IX oxidase inhibitors.

IF 3.8 1区 农林科学 Q1 AGRONOMY Pest Management Science Pub Date : 2025-02-13 DOI:10.1002/ps.8703
Dingfeng Luo, Yuanhui Wan, Yingying Wang, Changsheng Ma, Hao Li, Sheng Yan, Zhendong Bai, Lianyang Bai, Zuren Li
{"title":"Design, synthesis, and biological evaluation of oxime ether derivatives containing 1,5-dimethyl-6-thioxo-1,3,5-triazinane-2,4-dione as protoporphyrinogen IX oxidase inhibitors.","authors":"Dingfeng Luo, Yuanhui Wan, Yingying Wang, Changsheng Ma, Hao Li, Sheng Yan, Zhendong Bai, Lianyang Bai, Zuren Li","doi":"10.1002/ps.8703","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Herbicides based on protoporphyrinogen IX oxidase (PPO; EC 1.3.3.4) are widely used for weeding control in agricultural fields to safeguard food security. PPO herbicides, because of their low dosage, rapid action on weeds, slow accumulation in the environment and low toxicity to mammals, have become an important field of research in the development of new herbicides. This study presents a novel molecular scaffold with remarkably potent herbicidal activity.</p><p><strong>Results: </strong>A series of novel oxime ether derivatives containing 1,5-dimethyl-6-thioxo-1,3,5-triazinane-2,4-dione 6a-6z were designed and synthesized based on bioisosterism and substructure splicing, and characterized by <sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The configuration of compound 6u was confirmed by single-crystal X-ray diffraction. Compound 6r displayed excellent herbicidal activity of >95% against Echinochloa crus-galli, Digitaria sanguinalis, Medicago sativa and Conyza canadensis at a dosage of 37.5 g hm-2 in the glasshouse. At a dosage of 75 g hm-2, 6r was safe for application on rice and showed low toxicity (>200 μg g-1) towards Apis mellifera. Transcriptomics analysis of E. crus-galli treated by compound 6r, using oxadiazon as a positive control, revealed the compound's mode-of-action. There were eight metabolic and biosynthetic pathways of DEGs containing 'photosynthesis', 'porphyrin metabolism', 'carotenoid biosynthesis' and so on between 6r and oxadiazon as same. Scaffold94.443 (coproporphyrinogen-III oxidase) as upstream protoporphyrinogen IX changes were downregulated with quantitative reverse transcription PCR combined analysis treated 6r and oxadiazon in chlorophyll biosynthesis. Compound 6r target may be PPO and the NtPPO inhibitory effects, as represented by Ki, was 30.34 nm in vitro. Molecular docking showed that 6r could form two hydrogen bonds with Arg98.</p><p><strong>Conclusion: </strong>Through bioisosterism and substructure splicing, we successfully developed compound 6r as lead compound exhibiting herbicidal activity, with no harm to rice and honeybees. Further development of herbicides based on this scaffold is warranted. © 2025 Society of Chemical Industry.</p>","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pest Management Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ps.8703","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Herbicides based on protoporphyrinogen IX oxidase (PPO; EC 1.3.3.4) are widely used for weeding control in agricultural fields to safeguard food security. PPO herbicides, because of their low dosage, rapid action on weeds, slow accumulation in the environment and low toxicity to mammals, have become an important field of research in the development of new herbicides. This study presents a novel molecular scaffold with remarkably potent herbicidal activity.

Results: A series of novel oxime ether derivatives containing 1,5-dimethyl-6-thioxo-1,3,5-triazinane-2,4-dione 6a-6z were designed and synthesized based on bioisosterism and substructure splicing, and characterized by 1H and 13C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The configuration of compound 6u was confirmed by single-crystal X-ray diffraction. Compound 6r displayed excellent herbicidal activity of >95% against Echinochloa crus-galli, Digitaria sanguinalis, Medicago sativa and Conyza canadensis at a dosage of 37.5 g hm-2 in the glasshouse. At a dosage of 75 g hm-2, 6r was safe for application on rice and showed low toxicity (>200 μg g-1) towards Apis mellifera. Transcriptomics analysis of E. crus-galli treated by compound 6r, using oxadiazon as a positive control, revealed the compound's mode-of-action. There were eight metabolic and biosynthetic pathways of DEGs containing 'photosynthesis', 'porphyrin metabolism', 'carotenoid biosynthesis' and so on between 6r and oxadiazon as same. Scaffold94.443 (coproporphyrinogen-III oxidase) as upstream protoporphyrinogen IX changes were downregulated with quantitative reverse transcription PCR combined analysis treated 6r and oxadiazon in chlorophyll biosynthesis. Compound 6r target may be PPO and the NtPPO inhibitory effects, as represented by Ki, was 30.34 nm in vitro. Molecular docking showed that 6r could form two hydrogen bonds with Arg98.

Conclusion: Through bioisosterism and substructure splicing, we successfully developed compound 6r as lead compound exhibiting herbicidal activity, with no harm to rice and honeybees. Further development of herbicides based on this scaffold is warranted. © 2025 Society of Chemical Industry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pest Management Science
Pest Management Science 农林科学-昆虫学
CiteScore
7.90
自引率
9.80%
发文量
553
审稿时长
4.8 months
期刊介绍: Pest Management Science is the international journal of research and development in crop protection and pest control. Since its launch in 1970, the journal has become the premier forum for papers on the discovery, application, and impact on the environment of products and strategies designed for pest management. Published for SCI by John Wiley & Sons Ltd.
期刊最新文献
Evaluation of GS-omega/kappa-Hxtx-Hv1a and Bt toxins against Bt-resistant and -susceptible strains of Helicoverpa zea (Boddie) and Spodoptera frugiperda (J.E. Smith) Bio-based two-dimensional amphiphile with hierarchical self-assembly for enhancing pesticide utilization and reducing environmental risks A point mutation in IAA34 confers resistance to the auxin herbicide 2,4-D in Sisymbrium orientale Challenges and opportunities for embedding social science in pesticide resistance research and outreach Bacillus velezensis RKN1111 enhances resistance against Meloidogyne incognita in Cucumis sativus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1