Longfei Chen , Muhammad Yousaf , Jingsha Xu , Xiaoyan Ma
{"title":"Ultrafine particles: Sources, toxicity, and deposition dynamics in the human respiratory tract —— experimental and computational approaches","authors":"Longfei Chen , Muhammad Yousaf , Jingsha Xu , Xiaoyan Ma","doi":"10.1016/j.jenvman.2025.124458","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrafine particles (UFPs ≤ 100 nm) pose significant health risks, including respiratory and cardiovascular diseases, and cancer. This review consolidates main sources, toxicity, and exposure assessment approaches to elucidate the deposition dynamics of UFPswithin the human respiratory tract. Key factors influencing the deposition fraction (DF) are highlighted. Our findings indicate that the DF surpasses 50% for particles ≤50 nm and reaches up to 70% for particles ≤30 nm, impacting both adults and children. Vulnerable populations, such as children and individuals with pre-existing health conditions, are disproportionately affected, yet research focusing on these groups remains scarce. Methodological deficiencies, including high costs, simplifying assumptions, and computational constraints, challenge prediction accuracy. Experimental methods struggle to capture temporal fluctuations, while computational models fail to account for complex phenomena. Addressing these gaps is crucial for refining public health regulations and advancing nanomedicine. An improved understanding of UFPs dynamics will enhance protective measures and nanomedicine applications, particularly in targeted drug delivery and diagnostics. This review emphasizes the need for innovative experimental and computational methods to study UFPs deposition dynamics, ultimately advancing our understanding of UFPs' impact on human health.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"376 ","pages":"Article 124458"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725004347","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrafine particles (UFPs ≤ 100 nm) pose significant health risks, including respiratory and cardiovascular diseases, and cancer. This review consolidates main sources, toxicity, and exposure assessment approaches to elucidate the deposition dynamics of UFPswithin the human respiratory tract. Key factors influencing the deposition fraction (DF) are highlighted. Our findings indicate that the DF surpasses 50% for particles ≤50 nm and reaches up to 70% for particles ≤30 nm, impacting both adults and children. Vulnerable populations, such as children and individuals with pre-existing health conditions, are disproportionately affected, yet research focusing on these groups remains scarce. Methodological deficiencies, including high costs, simplifying assumptions, and computational constraints, challenge prediction accuracy. Experimental methods struggle to capture temporal fluctuations, while computational models fail to account for complex phenomena. Addressing these gaps is crucial for refining public health regulations and advancing nanomedicine. An improved understanding of UFPs dynamics will enhance protective measures and nanomedicine applications, particularly in targeted drug delivery and diagnostics. This review emphasizes the need for innovative experimental and computational methods to study UFPs deposition dynamics, ultimately advancing our understanding of UFPs' impact on human health.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.