Rosy Amodeo, Lavinia Morosi, Marina Meroni, Ezia Bello, Sara Timo, Roberta Frapolli, Maurizio D'Incalci, Monica Lupi
{"title":"Tumor Treating Fields enhance chemotherapy efficacy by increasing cellular drug uptake and retention in mesothelioma cells.","authors":"Rosy Amodeo, Lavinia Morosi, Marina Meroni, Ezia Bello, Sara Timo, Roberta Frapolli, Maurizio D'Incalci, Monica Lupi","doi":"10.62347/ODWL5634","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor Treating Fields (TTFields) applied with standard chemotherapy have been approved for the first-line treatment of unresectable pleural mesothelioma (PM), an aggressive malignancy with limited effective therapy options. In this study, we demonstrated that the simultaneous exposure to TTFields and doxorubicin or vinorelbine enhanced treatment efficacy in patient-derived PM cells by increasing intracellular drug concentrations. This was achieved by modulating several genes that encode transport proteins, such as the downregulation of P-glycoprotein (P-gp). Using specific, sensitive and quantitative analytical techniques, we observed a more than 70% increase in intracellular concentrations of doxorubicin and vinorelbine in samples treated with TTFields, and a greater than 50% increase in drug uptake in cells exposed to TTFields and pemetrexed. This result indicates that the increased drug concentration observed in TTFields treated cells is significant not only for drugs that are P-gp substrates but also suggests that TTFields could potentially affect other efflux pumps. However, the co-exposure to the drug and TTFields was critical to increasing intracellular drug levels, highlighting the necessity of concurrent use with drugs to enhance the antiproliferative effects of treatment. The <i>in vitro</i> findings were further corroborated by <i>in vivo</i> pharmacokinetic experiments in mice subcutaneously injected with epithelioid PM tumors. Indeed, a 30% increase in intratumor concentrations was observed when vinorelbine was administered with TTFields. Our findings suggest that TTFields could be a well-tolerated approach for enhancing intratumoral drug levels and potentially achieving a more significant therapeutic impact on PM treatment.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"15 1","pages":"271-285"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11815374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/ODWL5634","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor Treating Fields (TTFields) applied with standard chemotherapy have been approved for the first-line treatment of unresectable pleural mesothelioma (PM), an aggressive malignancy with limited effective therapy options. In this study, we demonstrated that the simultaneous exposure to TTFields and doxorubicin or vinorelbine enhanced treatment efficacy in patient-derived PM cells by increasing intracellular drug concentrations. This was achieved by modulating several genes that encode transport proteins, such as the downregulation of P-glycoprotein (P-gp). Using specific, sensitive and quantitative analytical techniques, we observed a more than 70% increase in intracellular concentrations of doxorubicin and vinorelbine in samples treated with TTFields, and a greater than 50% increase in drug uptake in cells exposed to TTFields and pemetrexed. This result indicates that the increased drug concentration observed in TTFields treated cells is significant not only for drugs that are P-gp substrates but also suggests that TTFields could potentially affect other efflux pumps. However, the co-exposure to the drug and TTFields was critical to increasing intracellular drug levels, highlighting the necessity of concurrent use with drugs to enhance the antiproliferative effects of treatment. The in vitro findings were further corroborated by in vivo pharmacokinetic experiments in mice subcutaneously injected with epithelioid PM tumors. Indeed, a 30% increase in intratumor concentrations was observed when vinorelbine was administered with TTFields. Our findings suggest that TTFields could be a well-tolerated approach for enhancing intratumoral drug levels and potentially achieving a more significant therapeutic impact on PM treatment.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.