Integrating single-cell sequencing and machine learning to uncover the role of mitophagy in subtyping and prognosis of esophageal cancer.

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Apoptosis Pub Date : 2025-02-13 DOI:10.1007/s10495-024-02061-1
Feng Tian, Xinyang He, Saiwei Wang, Yiwei Liang, Zijie Wang, Minxuan Hu, Yaxian Gao
{"title":"Integrating single-cell sequencing and machine learning to uncover the role of mitophagy in subtyping and prognosis of esophageal cancer.","authors":"Feng Tian, Xinyang He, Saiwei Wang, Yiwei Liang, Zijie Wang, Minxuan Hu, Yaxian Gao","doi":"10.1007/s10495-024-02061-1","DOIUrl":null,"url":null,"abstract":"<p><p>Globally, esophageal cancer stands as a prominent contributor to cancer-related fatalities, distinguished by its poor prognosis. Mitophagy has a significant impact on the process of cancer progression. This study investigated the prognostic significance of mitophagy-related genes (MRGs) in esophageal carcinoma (ESCA) to elucidate molecular subtypes. By analyzing RNA-seq data from The Cancer Genome Atlas (TCGA), 6451 differentially expressed genes (DEGs) were identified. Cox regression analysis narrowed this list to 14 MRGs with potential prognostic implications. ESCA patients were classified into two distinct subtypes (C1 and C2) based on these genes. Furthermore, leveraging the differentially expressed genes between Cluster 1 and Cluster 2, ESCA patients were classified into two novel subtypes (CA and CB). Importantly, patients in C2 and CA subtypes exhibited inferior prognosis compared to those in C1 and CB (p < 0.05). Functional enrichments and immune microenvironments varied significantly among these subtypes, with C1 and CB demonstrating higher immune checkpoint expression levels. Employing machine learning algorithms like LASSO regression, Random Forest and XGBoost, alongside multivariate COX regression analysis, two core genes: HSPD1 and MAP1LC3B were identified. A prognostic model based on these genes was developed and validated in two external cohorts. Additionally, single-cell sequencing analysis provided novel insights into esophageal cancer microenvironment heterogeneity. Through Coremine database screening, Icaritin emerged as a potential therapeutic candidate to potentially improve esophageal cancer prognosis. Molecular docking results indicated favorable binding efficacies of Icaritin with HSPD1 and MAP1LC3B, contributing to the understanding of the underlying molecular mechanisms of esophageal cancer and offering therapeutic avenues.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-024-02061-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, esophageal cancer stands as a prominent contributor to cancer-related fatalities, distinguished by its poor prognosis. Mitophagy has a significant impact on the process of cancer progression. This study investigated the prognostic significance of mitophagy-related genes (MRGs) in esophageal carcinoma (ESCA) to elucidate molecular subtypes. By analyzing RNA-seq data from The Cancer Genome Atlas (TCGA), 6451 differentially expressed genes (DEGs) were identified. Cox regression analysis narrowed this list to 14 MRGs with potential prognostic implications. ESCA patients were classified into two distinct subtypes (C1 and C2) based on these genes. Furthermore, leveraging the differentially expressed genes between Cluster 1 and Cluster 2, ESCA patients were classified into two novel subtypes (CA and CB). Importantly, patients in C2 and CA subtypes exhibited inferior prognosis compared to those in C1 and CB (p < 0.05). Functional enrichments and immune microenvironments varied significantly among these subtypes, with C1 and CB demonstrating higher immune checkpoint expression levels. Employing machine learning algorithms like LASSO regression, Random Forest and XGBoost, alongside multivariate COX regression analysis, two core genes: HSPD1 and MAP1LC3B were identified. A prognostic model based on these genes was developed and validated in two external cohorts. Additionally, single-cell sequencing analysis provided novel insights into esophageal cancer microenvironment heterogeneity. Through Coremine database screening, Icaritin emerged as a potential therapeutic candidate to potentially improve esophageal cancer prognosis. Molecular docking results indicated favorable binding efficacies of Icaritin with HSPD1 and MAP1LC3B, contributing to the understanding of the underlying molecular mechanisms of esophageal cancer and offering therapeutic avenues.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Apoptosis
Apoptosis 生物-生化与分子生物学
CiteScore
9.10
自引率
4.20%
发文量
85
审稿时长
1 months
期刊介绍: Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.
期刊最新文献
Integrating single-cell sequencing and machine learning to uncover the role of mitophagy in subtyping and prognosis of esophageal cancer. A cellular danse macabre: the choreography of programmed cell death. Cell death signaling in human erythron: erythrocytes lose the complexity of cell death machinery upon maturation. Effects of microplastics on chemo-resistance and tumorigenesis of colorectal cancer. Itaconate promotes mitophagy to inhibit neuronal ferroptosis after subarachnoid hemorrhage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1