Development of a prediction model for in-hospital mortality in immunocompromised chronic kidney diseases patients with severe infection.

IF 2.2 4区 医学 Q2 UROLOGY & NEPHROLOGY BMC Nephrology Pub Date : 2025-02-13 DOI:10.1186/s12882-025-04002-9
Yang Wang, Yuchao Zhou, Chunni Huang, Yonghong Wang, Lixuan Lou, Liang Zhao, Shutian Xu, Mingzhu Zheng, Shijun Li
{"title":"Development of a prediction model for in-hospital mortality in immunocompromised chronic kidney diseases patients with severe infection.","authors":"Yang Wang, Yuchao Zhou, Chunni Huang, Yonghong Wang, Lixuan Lou, Liang Zhao, Shutian Xu, Mingzhu Zheng, Shijun Li","doi":"10.1186/s12882-025-04002-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Immunosuppressive agents, although indispensable in the treatment of chronic kidney diseases (CKD), could compromise the patient's immune function. The risk factor for in-hospital mortality in immunocompromised CKD patients with severe infections remain elusive.</p><p><strong>Methods: </strong>We conducted a retrospective analysis of the clinical data of CKD patients who received immunosuppressive agents and presented severe infections. The cohort comprised 272 patients, among whom 73 experienced mortalities during their hospitalization. Logistic regression was employed on the training set to identify key feature variables and construct a predictive model for in-hospital mortality among immunocompromised CKD patients following severe infections. To facilitate clinical application, we constructed a nomogram to visually represent the predictive model.</p><p><strong>Results: </strong>Our findings indicate that ventilator use, vasoactive drug administration, elevated lactate dehydrogenase (LDH), total bilirubin (TBIL) levels, and persistent lymphopenia(PL) are effective predictors of in-hospital mortality in immunocompromised patients with severe infections. These variables were subsequently incorporated to construct a robust prognostic model. Our model demonstrated excellent discriminative ability (AUC = 0.959, 95% CI, 0.924-0.994), significantly outperforming the Sequential Organ Failure Assessment (SOFA) score (AUC = 0.878, 95% CI, 0.825-0.930) and quick Pitt Bacteremia Score (qPBS) (AUC = 0.897, 95% CI, 0.846-0.947). Calibration curve analysis and the Hosmer-Lemeshow (HL) test corroborate the concordance of our model with empirical observations. Furthermore, decision curve analysis (DCA) underscores the superior clinical utility of our predictive model when compared to the SOFA score and qPBS score. Most importantly, our results showed that PL is the most important predictor of in-hospital mortality in immunocompromised patients following severe infection.</p><p><strong>Conclusion: </strong>Our findings highlight PL as the most significant predictor of in-hospital mortality in immunocompromised CKD patients. A clinical prediction model incorporating PL as a key variable exhibited robust performance in terms of diagnostic accuracy and clinical utility.</p>","PeriodicalId":9089,"journal":{"name":"BMC Nephrology","volume":"26 1","pages":"78"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12882-025-04002-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Immunosuppressive agents, although indispensable in the treatment of chronic kidney diseases (CKD), could compromise the patient's immune function. The risk factor for in-hospital mortality in immunocompromised CKD patients with severe infections remain elusive.

Methods: We conducted a retrospective analysis of the clinical data of CKD patients who received immunosuppressive agents and presented severe infections. The cohort comprised 272 patients, among whom 73 experienced mortalities during their hospitalization. Logistic regression was employed on the training set to identify key feature variables and construct a predictive model for in-hospital mortality among immunocompromised CKD patients following severe infections. To facilitate clinical application, we constructed a nomogram to visually represent the predictive model.

Results: Our findings indicate that ventilator use, vasoactive drug administration, elevated lactate dehydrogenase (LDH), total bilirubin (TBIL) levels, and persistent lymphopenia(PL) are effective predictors of in-hospital mortality in immunocompromised patients with severe infections. These variables were subsequently incorporated to construct a robust prognostic model. Our model demonstrated excellent discriminative ability (AUC = 0.959, 95% CI, 0.924-0.994), significantly outperforming the Sequential Organ Failure Assessment (SOFA) score (AUC = 0.878, 95% CI, 0.825-0.930) and quick Pitt Bacteremia Score (qPBS) (AUC = 0.897, 95% CI, 0.846-0.947). Calibration curve analysis and the Hosmer-Lemeshow (HL) test corroborate the concordance of our model with empirical observations. Furthermore, decision curve analysis (DCA) underscores the superior clinical utility of our predictive model when compared to the SOFA score and qPBS score. Most importantly, our results showed that PL is the most important predictor of in-hospital mortality in immunocompromised patients following severe infection.

Conclusion: Our findings highlight PL as the most significant predictor of in-hospital mortality in immunocompromised CKD patients. A clinical prediction model incorporating PL as a key variable exhibited robust performance in terms of diagnostic accuracy and clinical utility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Nephrology
BMC Nephrology UROLOGY & NEPHROLOGY-
CiteScore
4.30
自引率
0.00%
发文量
375
审稿时长
3-8 weeks
期刊介绍: BMC Nephrology is an open access journal publishing original peer-reviewed research articles in all aspects of the prevention, diagnosis and management of kidney and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
期刊最新文献
Research on the development of an intelligent prediction model for blood pressure variability during hemodialysis. Commentary: Tolvaptan for Autosomal Dominant Polycystic Kidney Disease (ADPKD) - an update. Knowledge, attitudes, and practices of Lebanese licensed dietitians regarding hyperphosphatemia management in patients undergoing hemodialysis in a Lebanese Governorate. Membranoproliferative glomerulonephritis with syphilis involvement and possible Hepatitis B virus contribution: a case report. Development of a prediction model for in-hospital mortality in immunocompromised chronic kidney diseases patients with severe infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1