A common stay-on-goal mechanism in anterior cingulate cortex for information and effort choices.

IF 2.7 3区 医学 Q3 NEUROSCIENCES eNeuro Pub Date : 2025-02-13 DOI:10.1523/ENEURO.0454-24.2025
Valeria V González, Melissa Malvaez, Alex Yeghikian, Sydney Wissing, Melissa Sharpe, Kate M Wassum, Alicia Izquierdo
{"title":"A common stay-on-goal mechanism in anterior cingulate cortex for information and effort choices.","authors":"Valeria V González, Melissa Malvaez, Alex Yeghikian, Sydney Wissing, Melissa Sharpe, Kate M Wassum, Alicia Izquierdo","doi":"10.1523/ENEURO.0454-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Humans and non-humans alike often make choices to gain information, even when the information cannot be used to change the outcome. Prior research has shown the anterior cingulate cortex (ACC) is important for evaluating options involving reward-predictive information. Here we studied the role of ACC in information choices using optical inhibition to evaluate the contribution of this region during specific epochs of decision making. Rats could choose between an uninformative option followed by a cue that predicted reward 50% of the time vs. a fully informative option that signaled outcomes with certainty, but was rewarded only 20% of the time. Reward seeking during the informative S+ cue decreased following ACC inhibition, indicating a causal contribution of this region in supporting reward expectation to a cue signaling reward with certainty. Separately in a positive control experiment and in support of a known role for this region in sustaining high-effort behavior for preferred rewards, we observed reduced lever presses and lower breakpoints in effort choices following ACC inhibition. The lack of changes in reward latencies in both types of decisions indicate the motivational value of rewards remained intact, revealing instead a common role for ACC in maintaining persistence toward certain and valuable rewards.<b>Significance Statement</b> We often make choices to gain information, even when the information cannot be used to change the outcome. Here we investigated the precise timing of the role of the anterior cingulate cortex (ACC) in decisions that involve seeking certain versus uncertain rewards. By optically inhibiting ACC neurons, we demonstrate that this region is crucial for maintaining persistence toward rewards signaled with certainty, without altering the motivational value of the reward itself. In a positive control experiment, we also confirm that ACC is important in effort-based choice. The findings reveal a common role for ACC in maintaining persistence toward certain and valuable rewards, necessary for making optimal decisions. These results have implications for understanding psychiatric disorders involving maladaptive reward-seeking behavior.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0454-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Humans and non-humans alike often make choices to gain information, even when the information cannot be used to change the outcome. Prior research has shown the anterior cingulate cortex (ACC) is important for evaluating options involving reward-predictive information. Here we studied the role of ACC in information choices using optical inhibition to evaluate the contribution of this region during specific epochs of decision making. Rats could choose between an uninformative option followed by a cue that predicted reward 50% of the time vs. a fully informative option that signaled outcomes with certainty, but was rewarded only 20% of the time. Reward seeking during the informative S+ cue decreased following ACC inhibition, indicating a causal contribution of this region in supporting reward expectation to a cue signaling reward with certainty. Separately in a positive control experiment and in support of a known role for this region in sustaining high-effort behavior for preferred rewards, we observed reduced lever presses and lower breakpoints in effort choices following ACC inhibition. The lack of changes in reward latencies in both types of decisions indicate the motivational value of rewards remained intact, revealing instead a common role for ACC in maintaining persistence toward certain and valuable rewards.Significance Statement We often make choices to gain information, even when the information cannot be used to change the outcome. Here we investigated the precise timing of the role of the anterior cingulate cortex (ACC) in decisions that involve seeking certain versus uncertain rewards. By optically inhibiting ACC neurons, we demonstrate that this region is crucial for maintaining persistence toward rewards signaled with certainty, without altering the motivational value of the reward itself. In a positive control experiment, we also confirm that ACC is important in effort-based choice. The findings reveal a common role for ACC in maintaining persistence toward certain and valuable rewards, necessary for making optimal decisions. These results have implications for understanding psychiatric disorders involving maladaptive reward-seeking behavior.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
期刊最新文献
Spatial Heterogeneity in Myelin Sheathing Impacts Signaling Reliability and Susceptibility to Injury. Temporal Lobectomy Evidence for the Role of the Amygdala in Early Emotional Face and Body Processing. Neuronal Properties in the Lateral Habenula and Adult-Newborn Interactions in Virgin Female and Male Mice. Decoding Visual Spatial Attention Control. Cholecystokinin modulates corticostriatal transmission and plasticity in rodents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1