The diagnostic performance of automatic B-lines detection for evaluating pulmonary edema in the emergency department among novice point-of-care ultrasound practitioners.
Kamonwon Ienghong, Lap Woon Cheung, Dhanu Gaysonsiri, Korakot Apiratwarakul
{"title":"The diagnostic performance of automatic B-lines detection for evaluating pulmonary edema in the emergency department among novice point-of-care ultrasound practitioners.","authors":"Kamonwon Ienghong, Lap Woon Cheung, Dhanu Gaysonsiri, Korakot Apiratwarakul","doi":"10.1007/s10140-025-02319-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>B-lines in lung ultrasound have been a critical clue for detecting pulmonary edema. However, distinguishing B-lines from other artifacts is a challenge, especially for novice point of care ultrasound (POCUS) practitioners. This study aimed to determine the efficacy of automatic detection of B-lines using artificial intelligence (Auto B-lines) for detecting pulmonary edema.</p><p><strong>Methods: </strong>A retrospective study was conducted on dyspnea patients treated at the emergency department between January 2023 and June 2024. Ultrasound documentation and electronic emergency department medical records were evaluated for sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of auto B-lines in detection of pulmonary edema.</p><p><strong>Results: </strong>Sixty-six patients with a final diagnosis of pulmonary edema were enrolled, with 54.68% having positive B-lines in lung ultrasound. Auto B-lines had 95.6% sensitivity (95% confidence interval [CI]: 0.92-0.98) and 77.2% specificity (95% CI: 0.74-0.80). Physicians demonstrated 82.7% sensitivity (95% CI: 0.79-0.97) and 63.09% sensitivity (95% CI: 0.58-0.69).</p><p><strong>Conclusion: </strong>The auto B-lines were highly sensitive in diagnosing pulmonary edema in novice POCUS practitioners. The clinical integration of physicians and artificial intelligence enhances diagnostic capabilities.</p>","PeriodicalId":11623,"journal":{"name":"Emergency Radiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emergency Radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10140-025-02319-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: B-lines in lung ultrasound have been a critical clue for detecting pulmonary edema. However, distinguishing B-lines from other artifacts is a challenge, especially for novice point of care ultrasound (POCUS) practitioners. This study aimed to determine the efficacy of automatic detection of B-lines using artificial intelligence (Auto B-lines) for detecting pulmonary edema.
Methods: A retrospective study was conducted on dyspnea patients treated at the emergency department between January 2023 and June 2024. Ultrasound documentation and electronic emergency department medical records were evaluated for sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of auto B-lines in detection of pulmonary edema.
Results: Sixty-six patients with a final diagnosis of pulmonary edema were enrolled, with 54.68% having positive B-lines in lung ultrasound. Auto B-lines had 95.6% sensitivity (95% confidence interval [CI]: 0.92-0.98) and 77.2% specificity (95% CI: 0.74-0.80). Physicians demonstrated 82.7% sensitivity (95% CI: 0.79-0.97) and 63.09% sensitivity (95% CI: 0.58-0.69).
Conclusion: The auto B-lines were highly sensitive in diagnosing pulmonary edema in novice POCUS practitioners. The clinical integration of physicians and artificial intelligence enhances diagnostic capabilities.
期刊介绍:
To advance and improve the radiologic aspects of emergency careTo establish Emergency Radiology as an area of special interest in the field of diagnostic imagingTo improve methods of education in Emergency RadiologyTo provide, through formal meetings, a mechanism for presentation of scientific papers on various aspects of Emergency Radiology and continuing educationTo promote research in Emergency Radiology by clinical and basic science investigators, including residents and other traineesTo act as the resource body on Emergency Radiology for those interested in emergency patient care Members of the American Society of Emergency Radiology (ASER) receive the Emergency Radiology journal as a benefit of membership!