Yunyi Wang , Xiang Sun , Bingxu Lu , Danya Zhang , Yaping Yin , Shuguang Liu , Lei Chen , Zhaoqiang Zhang
{"title":"Current applications, future Perspectives and challenges of Organoid technology in oral cancer research","authors":"Yunyi Wang , Xiang Sun , Bingxu Lu , Danya Zhang , Yaping Yin , Shuguang Liu , Lei Chen , Zhaoqiang Zhang","doi":"10.1016/j.ejphar.2025.177368","DOIUrl":null,"url":null,"abstract":"<div><div>Oral cancer poses significant health risks with an increasing incidence annually. Despite advancements in treatment methods, their efficacy is frequently constrained by cancer heterogeneity and drug resistance, leading to minimal improvement in the 5-year survival rate. Therefore, there is a critical need for new treatment methods leaded by representative preclinical research models. Compared to other models, organoids can more precisely simulate the tissue structure, genetic characteristics, and tumor microenvironment (TME) of <em>in vivo</em> tumors, exhibiting high tumor specificity. This makes organoid technology a valuable tool in investigating tumor development, mechanisms of metastasis, drug screening, prediction of clinical responses, and personalized patient treatment. Moreover, integrating organoid technology with other biotechnologies could expand its applications in tissue regeneration. Although organoid technology is increasingly utilized in oral cancer research, a systematic review in this field is absent. This paper is to bridge the gap by reviewing the development and current status of organoid research, highlighting its applications, future prospects, and challenges in oral cancer. It aims to provide novel insights into the role of organoids in precision treatment and regenerative medicine for oral cancer.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"993 ","pages":"Article 177368"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925001219","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Oral cancer poses significant health risks with an increasing incidence annually. Despite advancements in treatment methods, their efficacy is frequently constrained by cancer heterogeneity and drug resistance, leading to minimal improvement in the 5-year survival rate. Therefore, there is a critical need for new treatment methods leaded by representative preclinical research models. Compared to other models, organoids can more precisely simulate the tissue structure, genetic characteristics, and tumor microenvironment (TME) of in vivo tumors, exhibiting high tumor specificity. This makes organoid technology a valuable tool in investigating tumor development, mechanisms of metastasis, drug screening, prediction of clinical responses, and personalized patient treatment. Moreover, integrating organoid technology with other biotechnologies could expand its applications in tissue regeneration. Although organoid technology is increasingly utilized in oral cancer research, a systematic review in this field is absent. This paper is to bridge the gap by reviewing the development and current status of organoid research, highlighting its applications, future prospects, and challenges in oral cancer. It aims to provide novel insights into the role of organoids in precision treatment and regenerative medicine for oral cancer.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.