Tropisetron attenuates high-glucose-induced vascular endothelial dysfunction via inhibition of calcineurin/NFAT signalling.

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY European journal of pharmacology Pub Date : 2025-02-15 DOI:10.1016/j.ejphar.2025.177389
Anita Barzegar-Fallah, Pejman Ghaffari-Bohlouli, Shabnam Nadjafi, Ali Razmi, Ahmad Reza Dehpour, Ali Ghaffarian-Bahraman, Houman Alimoradi, Massoumeh Shafiei
{"title":"Tropisetron attenuates high-glucose-induced vascular endothelial dysfunction via inhibition of calcineurin/NFAT signalling.","authors":"Anita Barzegar-Fallah, Pejman Ghaffari-Bohlouli, Shabnam Nadjafi, Ali Razmi, Ahmad Reza Dehpour, Ali Ghaffarian-Bahraman, Houman Alimoradi, Massoumeh Shafiei","doi":"10.1016/j.ejphar.2025.177389","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular endothelial dysfunction (VED) is considered an important initiating factor in pathogenesis of diabetic vascular disease. In this process, oxidative insult, cellular hypertrophy, and activation of the calcineurin/nuclear factor of activated T-cell (NFAT) pathway play key roles. Herein, we investigated the effects of tropisetron (TRS), a calcineurin inhibitor, on high glucose (HG)-induced hypertrophy and apoptosis in human umbilical vein endothelial cells (HUVECs). To this end, HUVECs and chorioallantoic membranes (CAMs) were exposed to HG with or without TRS or cyclosporine A (CsA), and the effects of the treatments were evaluated on oxidative stress generation, cell number (proliferation and apoptosis), cell size (hypertrophy), and vessel formation. We also explored the possible role of calcineurin-NFAT signalling in the potential protective effects of TRS on hypertrophy and apoptosis associated with HG. The average size and protein content of the cells exposed to HG for 48h were significantly increased compared with normal glucose (NG). HG significantly increased apoptosis, altered the cell cycle, and elevated oxidative and nitrosative stress in HUVECs. Further, exposing cells to HG resulted in elevated calcineurin activity and NFATc1 translocation to the nuclei. HG also caused a significant decrease in the formation of new blood vessels in CAMs. Inhibition of calcineurin/ NFAT pathway by TRS or CsA protected against these pathological changes. Our data demonstrated that inhibition of calcineurin/NFAT signalling by TRS, as a safe calcineurin inhibitor, may ameliorate HG-induced VED. Further in vivo and clinical studies are required to fully determine the protective effects of TRS against VED in diabetes.</p>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":" ","pages":"177389"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejphar.2025.177389","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular endothelial dysfunction (VED) is considered an important initiating factor in pathogenesis of diabetic vascular disease. In this process, oxidative insult, cellular hypertrophy, and activation of the calcineurin/nuclear factor of activated T-cell (NFAT) pathway play key roles. Herein, we investigated the effects of tropisetron (TRS), a calcineurin inhibitor, on high glucose (HG)-induced hypertrophy and apoptosis in human umbilical vein endothelial cells (HUVECs). To this end, HUVECs and chorioallantoic membranes (CAMs) were exposed to HG with or without TRS or cyclosporine A (CsA), and the effects of the treatments were evaluated on oxidative stress generation, cell number (proliferation and apoptosis), cell size (hypertrophy), and vessel formation. We also explored the possible role of calcineurin-NFAT signalling in the potential protective effects of TRS on hypertrophy and apoptosis associated with HG. The average size and protein content of the cells exposed to HG for 48h were significantly increased compared with normal glucose (NG). HG significantly increased apoptosis, altered the cell cycle, and elevated oxidative and nitrosative stress in HUVECs. Further, exposing cells to HG resulted in elevated calcineurin activity and NFATc1 translocation to the nuclei. HG also caused a significant decrease in the formation of new blood vessels in CAMs. Inhibition of calcineurin/ NFAT pathway by TRS or CsA protected against these pathological changes. Our data demonstrated that inhibition of calcineurin/NFAT signalling by TRS, as a safe calcineurin inhibitor, may ameliorate HG-induced VED. Further in vivo and clinical studies are required to fully determine the protective effects of TRS against VED in diabetes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
期刊最新文献
Editorial Board GDF11 alleviates cardiac ischemia/reperfusion injury by suppressing the mtDNA damage-inflammatory response axis Lithospermic acid alleviates oxidative stress and inflammation in DSS-induced colitis through Nrf2. Systematic review of neurological diseases and carbenoxolone: A double-edged sword? Tropisetron attenuates high-glucose-induced vascular endothelial dysfunction via inhibition of calcineurin/NFAT signalling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1