Interleukin-35 mRNA therapy for influenza virus-induced pneumonia in mice

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY European journal of pharmacology Pub Date : 2025-02-11 DOI:10.1016/j.ejphar.2025.177366
Yanyan Li , Yuqin Liao , Yiqi Miao , Changxiao Yu , Jinrong Long , Jiayu Wu , Jun Zuo , Zhen Zhang , Wei Dou , Xin Wang , Bo Zhang , Cuiyun Yu , Jing Yang , Shengqi Wang
{"title":"Interleukin-35 mRNA therapy for influenza virus-induced pneumonia in mice","authors":"Yanyan Li ,&nbsp;Yuqin Liao ,&nbsp;Yiqi Miao ,&nbsp;Changxiao Yu ,&nbsp;Jinrong Long ,&nbsp;Jiayu Wu ,&nbsp;Jun Zuo ,&nbsp;Zhen Zhang ,&nbsp;Wei Dou ,&nbsp;Xin Wang ,&nbsp;Bo Zhang ,&nbsp;Cuiyun Yu ,&nbsp;Jing Yang ,&nbsp;Shengqi Wang","doi":"10.1016/j.ejphar.2025.177366","DOIUrl":null,"url":null,"abstract":"<div><div>Influenza virus-induced pneumonia is a common complication caused by influenza A virus infection and causes severe lung inflammation. After infection, the body induces an active immune response that can produce cytokine storm, leading to increased expression of pro-inflammatory factors and tissue damage. Interleukin-35 (IL-35) is a recently identified cytokine associated with viral infection. IL-35 may inhibit the inflammation caused by viral infection and therefore may be developed into an antiviral treatment. Compared with traditional drugs, mRNA drugs have the advantages of simple production process, short development cycle, strong target specificity, high safety, and long-lasting action. In this study,we prepared IL-35 mRNA and IL-35 mRNA/Lipid Nanoparticle (IL-35 mRNA/LNP). To investigate the role of IL-35 mRNA in the host defense against post-influenza pneumonia, a mouse model of pneumonia caused by influenza infection was established. After influenza infection, the mice produced a large number of inflammatory factors that caused lung tissue damage, while administration of IL-35 mRNA/LNP effectively reduced the inflammatory response and improved the survival rate of mice. In addition, mice injected with IL-35 mRNA/LNP (125 μg/kg) directly via tail vein did not show significant inflammatory responses or tissue damage. These data suggest that IL-35 mRNA attenuates the inflammatory response caused by influenza virus infection and shows potential for development as a new drug for the treatment of influenza virus-induced pneumonia.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"993 ","pages":"Article 177366"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925001190","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Influenza virus-induced pneumonia is a common complication caused by influenza A virus infection and causes severe lung inflammation. After infection, the body induces an active immune response that can produce cytokine storm, leading to increased expression of pro-inflammatory factors and tissue damage. Interleukin-35 (IL-35) is a recently identified cytokine associated with viral infection. IL-35 may inhibit the inflammation caused by viral infection and therefore may be developed into an antiviral treatment. Compared with traditional drugs, mRNA drugs have the advantages of simple production process, short development cycle, strong target specificity, high safety, and long-lasting action. In this study,we prepared IL-35 mRNA and IL-35 mRNA/Lipid Nanoparticle (IL-35 mRNA/LNP). To investigate the role of IL-35 mRNA in the host defense against post-influenza pneumonia, a mouse model of pneumonia caused by influenza infection was established. After influenza infection, the mice produced a large number of inflammatory factors that caused lung tissue damage, while administration of IL-35 mRNA/LNP effectively reduced the inflammatory response and improved the survival rate of mice. In addition, mice injected with IL-35 mRNA/LNP (125 μg/kg) directly via tail vein did not show significant inflammatory responses or tissue damage. These data suggest that IL-35 mRNA attenuates the inflammatory response caused by influenza virus infection and shows potential for development as a new drug for the treatment of influenza virus-induced pneumonia.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
期刊最新文献
Editorial Board GDF11 alleviates cardiac ischemia/reperfusion injury by suppressing the mtDNA damage-inflammatory response axis Lithospermic acid alleviates oxidative stress and inflammation in DSS-induced colitis through Nrf2. Systematic review of neurological diseases and carbenoxolone: A double-edged sword? Tropisetron attenuates high-glucose-induced vascular endothelial dysfunction via inhibition of calcineurin/NFAT signalling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1