A semidominant point mutation of Mediator tail subunit MED5b in Arabidopsis leads to altered enrichment of H3K27me3 and reduced expression of targets of MYC2.
Jiaxin Long, Shelby Sliger, Zhi-Wei Luo, Pete E Pascuzzi, Clint Chapple, Joe Ogas
{"title":"A semidominant point mutation of Mediator tail subunit MED5b in Arabidopsis leads to altered enrichment of H3K27me3 and reduced expression of targets of MYC2.","authors":"Jiaxin Long, Shelby Sliger, Zhi-Wei Luo, Pete E Pascuzzi, Clint Chapple, Joe Ogas","doi":"10.1093/g3journal/jkae301","DOIUrl":null,"url":null,"abstract":"<p><p>The Mediator complex coordinates regulatory input for transcription driven by RNA polymerase II in eukaryotes. reduced epidermal fluorescence4-3 (ref4-3) is a semidominant mutation that results in a single amino acid substitution in the Mediator tail subunit Med5b. Previous characterization of ref4-3 revealed altered expression of a variety of loci in Arabidopsis, including those contributing to phenylpropanoid biosynthesis. Examination of existing RNA-seq data indicated that loci enriched for the transcriptionally repressive chromatin modification H3K27me3 are overrepresented among genes that are misregulated in ref4-3. We used ChIP-seq and RNA-seq to examine the possibility that perturbation of H3K27me3 homeostasis in ref4-3 plants contributed to altered transcript levels. We observed that ref4-3 results in a modest global reduction of H3K27me3 at enriched loci and that this reduction is not dependent on gene expression; however, altered H3K27me3 was not strongly predictive of altered expression in ref4-3 plants. Instead, our analyses revealed a substantial enrichment of targets of the MYC2 transcriptional regulator among genes that exhibit decreased expression in ref4-3. Consistent with previous characterization of ref4-3, we observed that ref4-3-dependent decreased expression of MYC2 targets can be suppressed by loss of another Mediator tail subunit, MED25. This observation is consistent with previous biochemical characterization of MYC2. Our data highlight the diverse and distinct impacts that a single amino acid change in the tail subunit of Mediator can have on transcriptional circuits and raise the prospect that Mediator directly contributes to H3K27me3 homeostasis in plants.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae301","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The Mediator complex coordinates regulatory input for transcription driven by RNA polymerase II in eukaryotes. reduced epidermal fluorescence4-3 (ref4-3) is a semidominant mutation that results in a single amino acid substitution in the Mediator tail subunit Med5b. Previous characterization of ref4-3 revealed altered expression of a variety of loci in Arabidopsis, including those contributing to phenylpropanoid biosynthesis. Examination of existing RNA-seq data indicated that loci enriched for the transcriptionally repressive chromatin modification H3K27me3 are overrepresented among genes that are misregulated in ref4-3. We used ChIP-seq and RNA-seq to examine the possibility that perturbation of H3K27me3 homeostasis in ref4-3 plants contributed to altered transcript levels. We observed that ref4-3 results in a modest global reduction of H3K27me3 at enriched loci and that this reduction is not dependent on gene expression; however, altered H3K27me3 was not strongly predictive of altered expression in ref4-3 plants. Instead, our analyses revealed a substantial enrichment of targets of the MYC2 transcriptional regulator among genes that exhibit decreased expression in ref4-3. Consistent with previous characterization of ref4-3, we observed that ref4-3-dependent decreased expression of MYC2 targets can be suppressed by loss of another Mediator tail subunit, MED25. This observation is consistent with previous biochemical characterization of MYC2. Our data highlight the diverse and distinct impacts that a single amino acid change in the tail subunit of Mediator can have on transcriptional circuits and raise the prospect that Mediator directly contributes to H3K27me3 homeostasis in plants.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.