Likelihood Functions for Bioassay Measurements for Development, Selection, and Calibration of Biokinetic Models.

IF 1 4区 医学 Q4 ENVIRONMENTAL SCIENCES Health physics Pub Date : 2025-02-14 DOI:10.1097/HP.0000000000001956
John Klumpp, Deepesh Poudel
{"title":"Likelihood Functions for Bioassay Measurements for Development, Selection, and Calibration of Biokinetic Models.","authors":"John Klumpp, Deepesh Poudel","doi":"10.1097/HP.0000000000001956","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Internal dosimetrists are concerned with the development, selection, and calibration of biokinetic models to calculate radiation doses from incorporated radionuclides. This is accomplished using measurements of radionuclides in organs, tissues, and excreta, i.e., bioassay measurements. Each bioassay measurement has a corresponding likelihood function, which represents the relative likelihood of different biokinetic model parameters resulting in the measurement value. In order for a bioassay measurement to be interpreted properly, the correct likelihood function must be determined. Failing to use the correct likelihood function for each bioassay measurement results in improperly weighting certain measurements over other measurements, which in turn leads to incorrect dose estimates. This paper describes the correct likelihood functions to use for a wide variety of bioassay measurements, as well as a description of how to use them. These likelihood functions represent the vast majority of those likely to be needed for interpreting bioassay measurements. Therefore, this paper may serve as a tool kit that can be used by academic and occupational internal dosimetrists.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001956","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Internal dosimetrists are concerned with the development, selection, and calibration of biokinetic models to calculate radiation doses from incorporated radionuclides. This is accomplished using measurements of radionuclides in organs, tissues, and excreta, i.e., bioassay measurements. Each bioassay measurement has a corresponding likelihood function, which represents the relative likelihood of different biokinetic model parameters resulting in the measurement value. In order for a bioassay measurement to be interpreted properly, the correct likelihood function must be determined. Failing to use the correct likelihood function for each bioassay measurement results in improperly weighting certain measurements over other measurements, which in turn leads to incorrect dose estimates. This paper describes the correct likelihood functions to use for a wide variety of bioassay measurements, as well as a description of how to use them. These likelihood functions represent the vast majority of those likely to be needed for interpreting bioassay measurements. Therefore, this paper may serve as a tool kit that can be used by academic and occupational internal dosimetrists.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Health physics
Health physics 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.20
自引率
0.00%
发文量
324
审稿时长
3-8 weeks
期刊介绍: Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.
期刊最新文献
A 10-Year Personal History of the Radiological Operations Support Specialist. About CRCPD. Comprehensive Review of CRCPD Efforts in the Disposition of Disused Radioactive Sources. CRCPD E-43 Committee for Interagency Environmental Data Sharing and Communications Endorsed RadResponder Threshold Sets. Establishing Consensus with Users of Research Irradiator Devices to Facilitate Source Type Replacement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1