{"title":"Peripheral Nerve Stimulation Thresholds Based on Waveform Shape and Implications for Guideline Limits.","authors":"Gregory B Gajda","doi":"10.1097/HP.0000000000001949","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>The objective of this paper is to derive basic restrictions for induced internal electric field and reference levels for external magnetic flux density for a class of periodic non-sinusoidal waveforms as multiples of the existing limits applicable to sinusoidal waveforms in current exposure standards. The Law of Electrostimulation and the Spatially Extended Nonlinear Node computational model were used to derive peripheral nerve stimulation thresholds of the internal electric field for both non-sinusoidal and sinusoidal waveforms. Threshold ratios (non-sinusoidal to sinusoidal) permitted basic restrictions and reference levels to be derived as multiples of the sinusoidal ones. Intercomparisons of threshold ratios from both models suggest that they are in agreement for flat-topped flux density waveforms with fast rise-times relative to the period but showed a discrepancy for the continuous sinusoid. Results from the computational model were used to establish the threshold ratios used in the conversion. Resulting non-sinusoidal basic restrictions and reference levels were found to have the same functional relationship with frequency as the sinusoidal ones, consisting of two ranges: a flat rheobase and a frequency-dependent (basic restriction) or inverse frequency-dependent (reference level) portion that intersects the rheobase at a transition frequency that is waveform-dependent. Above the transition frequency, the non-sinusoidal basic restriction was found to be inversely related to the flux density rise-time, resulting in an increased limit for fast-rising waveforms. The transition frequencies of fast-rising waveforms were found to be lowered relative to the sinusoidal one. Above the same transition frequency, the non-sinusoidal reference level is flat with frequency and was found to be approximately 79% lower than the sinusoidal one.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001949","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: The objective of this paper is to derive basic restrictions for induced internal electric field and reference levels for external magnetic flux density for a class of periodic non-sinusoidal waveforms as multiples of the existing limits applicable to sinusoidal waveforms in current exposure standards. The Law of Electrostimulation and the Spatially Extended Nonlinear Node computational model were used to derive peripheral nerve stimulation thresholds of the internal electric field for both non-sinusoidal and sinusoidal waveforms. Threshold ratios (non-sinusoidal to sinusoidal) permitted basic restrictions and reference levels to be derived as multiples of the sinusoidal ones. Intercomparisons of threshold ratios from both models suggest that they are in agreement for flat-topped flux density waveforms with fast rise-times relative to the period but showed a discrepancy for the continuous sinusoid. Results from the computational model were used to establish the threshold ratios used in the conversion. Resulting non-sinusoidal basic restrictions and reference levels were found to have the same functional relationship with frequency as the sinusoidal ones, consisting of two ranges: a flat rheobase and a frequency-dependent (basic restriction) or inverse frequency-dependent (reference level) portion that intersects the rheobase at a transition frequency that is waveform-dependent. Above the transition frequency, the non-sinusoidal basic restriction was found to be inversely related to the flux density rise-time, resulting in an increased limit for fast-rising waveforms. The transition frequencies of fast-rising waveforms were found to be lowered relative to the sinusoidal one. Above the same transition frequency, the non-sinusoidal reference level is flat with frequency and was found to be approximately 79% lower than the sinusoidal one.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.