{"title":"Neurotechnology-Based, Intensive, Supplementary Upper-Extremity Training for Inpatients With Subacute Stroke: Feasibility Study.","authors":"Reut Binyamin-Netser, Shirley Handelzalts, Noy Goldhamer, Inbar Avni, Adi Tayer Yeshurun, Yogev Koren, Ofri Bibas Levy, Shilo Kramer, Simona Bar Haim, Lior Shmuelof","doi":"10.2196/56397","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Upper-extremity hemiparesis is a common and debilitating impairment after stroke, severely restricting stroke survivors' ability to participate in daily activities and function independently. Alarmingly, only a small percentage of stroke patients fully recover upper extremity function. Animal models indicate that high-dose upper extremity training during the early poststroke phase can significantly enhance motor recovery. However, translating such programs for human patients remains challenging due to resource limitations, patient compliance issues, and administrative constraints.</p><p><strong>Objective: </strong>This study aimed to assess the feasibility and potential efficacy of an intensive, video game-based upper-extremity training protocol designed to improve movement quality during inpatient stroke rehabilitation. Additionally, it evaluated the resources required for this intervention. Specifically, the protocol provides high-intensity, high-dose training to facilitate motor recovery by engaging patients in targeted interactive exercises.</p><p><strong>Methods: </strong>Twelve patients with upper-extremity hemiparesis completed a 4-week intensive training program comprising 40 sessions of 60 minutes; the training was conducted for 2 hours per day, 5 days per week. This was delivered in addition to standard care, which included 3 therapeutic sessions daily. Two video game-based platforms were used: one platform (tech 1) targeted proximal movements involving the shoulder and elbow, while the second platform (tech 2) emphasized distal movements of the wrist and fingers. Feasibility was assessed using the measure of time on task and measures of patients' motivation and engagement. Potential effectiveness was assessed using the Fugl-Meyer Assessment of the upper extremity (FMA-UE) scale, Action Research Arm Test (ARAT), and Stroke Impact Scale (SIS).</p><p><strong>Results: </strong>Of the 12 patients, 8 completed the full protocol, 3 completed 34-38 sessions, and 1 completed 27 sessions. On average, patients actively engaged in exercises for 35 (SD 4) minutes per hour on the proximal platform (tech 1) and 37 (SD 2) minutes on the distal platform (tech 2). Patients reported high motivation and enjoyment throughout the sessions, with an Intrinsic Motivation Inventory enjoyment score of 6.49 (SD 0.66) out of 7. Pain levels were minimal, with a visual analogue scale (VAS) mean score of 2.00 (SD 2.32). Significant improvements were observed in motor function assessments: the mean improvement in FMA-UE score was 16.5 (SD 10.2) points, ARAT scores increased by 22.9 (SD 13.1) points, and the SIS Hand Function and Recovery score showed a mean delta of 1.23 (SD 0.80) points and a 23.33% (SD 21.5%) improvement, respectively.</p><p><strong>Conclusions: </strong>These findings demonstrate that a high-dose, high-intensity, video game-based training protocol is feasible and can be successfully integrated into subacute stroke rehabilitation. Additionally, preliminary evidence suggests that this supplementary intervention may be effective in enhancing motor recovery. This approach holds promise for future stroke rehabilitation protocols by offering an engaging, high-dose, and high-intensity program during early recovery.</p>","PeriodicalId":14795,"journal":{"name":"JMIR Serious Games","volume":"13 ","pages":"e56397"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Serious Games","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/56397","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Upper-extremity hemiparesis is a common and debilitating impairment after stroke, severely restricting stroke survivors' ability to participate in daily activities and function independently. Alarmingly, only a small percentage of stroke patients fully recover upper extremity function. Animal models indicate that high-dose upper extremity training during the early poststroke phase can significantly enhance motor recovery. However, translating such programs for human patients remains challenging due to resource limitations, patient compliance issues, and administrative constraints.
Objective: This study aimed to assess the feasibility and potential efficacy of an intensive, video game-based upper-extremity training protocol designed to improve movement quality during inpatient stroke rehabilitation. Additionally, it evaluated the resources required for this intervention. Specifically, the protocol provides high-intensity, high-dose training to facilitate motor recovery by engaging patients in targeted interactive exercises.
Methods: Twelve patients with upper-extremity hemiparesis completed a 4-week intensive training program comprising 40 sessions of 60 minutes; the training was conducted for 2 hours per day, 5 days per week. This was delivered in addition to standard care, which included 3 therapeutic sessions daily. Two video game-based platforms were used: one platform (tech 1) targeted proximal movements involving the shoulder and elbow, while the second platform (tech 2) emphasized distal movements of the wrist and fingers. Feasibility was assessed using the measure of time on task and measures of patients' motivation and engagement. Potential effectiveness was assessed using the Fugl-Meyer Assessment of the upper extremity (FMA-UE) scale, Action Research Arm Test (ARAT), and Stroke Impact Scale (SIS).
Results: Of the 12 patients, 8 completed the full protocol, 3 completed 34-38 sessions, and 1 completed 27 sessions. On average, patients actively engaged in exercises for 35 (SD 4) minutes per hour on the proximal platform (tech 1) and 37 (SD 2) minutes on the distal platform (tech 2). Patients reported high motivation and enjoyment throughout the sessions, with an Intrinsic Motivation Inventory enjoyment score of 6.49 (SD 0.66) out of 7. Pain levels were minimal, with a visual analogue scale (VAS) mean score of 2.00 (SD 2.32). Significant improvements were observed in motor function assessments: the mean improvement in FMA-UE score was 16.5 (SD 10.2) points, ARAT scores increased by 22.9 (SD 13.1) points, and the SIS Hand Function and Recovery score showed a mean delta of 1.23 (SD 0.80) points and a 23.33% (SD 21.5%) improvement, respectively.
Conclusions: These findings demonstrate that a high-dose, high-intensity, video game-based training protocol is feasible and can be successfully integrated into subacute stroke rehabilitation. Additionally, preliminary evidence suggests that this supplementary intervention may be effective in enhancing motor recovery. This approach holds promise for future stroke rehabilitation protocols by offering an engaging, high-dose, and high-intensity program during early recovery.
期刊介绍:
JMIR Serious Games (JSG, ISSN 2291-9279) is a sister journal of the Journal of Medical Internet Research (JMIR), one of the most cited journals in health informatics (Impact Factor 2016: 5.175). JSG has a projected impact factor (2016) of 3.32. JSG is a multidisciplinary journal devoted to computer/web/mobile applications that incorporate elements of gaming to solve serious problems such as health education/promotion, teaching and education, or social change.The journal also considers commentary and research in the fields of video games violence and video games addiction.