Polyphenol-based pH-responsive nanoparticles enhance chemo-immunotherapy in pancreatic cancer

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Controlled Release Pub Date : 2025-02-16 DOI:10.1016/j.jconrel.2025.02.021
Jieru Li , Yiwei Dai , Tao Wang , Xinyu Zhang , Pengcheng Du , Yuman Dong , Zuoyi Jiao
{"title":"Polyphenol-based pH-responsive nanoparticles enhance chemo-immunotherapy in pancreatic cancer","authors":"Jieru Li ,&nbsp;Yiwei Dai ,&nbsp;Tao Wang ,&nbsp;Xinyu Zhang ,&nbsp;Pengcheng Du ,&nbsp;Yuman Dong ,&nbsp;Zuoyi Jiao","doi":"10.1016/j.jconrel.2025.02.021","DOIUrl":null,"url":null,"abstract":"<div><div>Pancreatic ductal adenocarcinoma (PDAC) is challenging to treat due to its difficulty in early diagnosis, highly invasive nature, and high metastatic potential. Currently, the primary treatments for PDAC are chemotherapy and immunotherapy. However, the abundance of extracellular matrix and immunosuppressive cells in the tumor microenvironment (TME) severely impedes the effectiveness of chemotherapy and immunotherapy, promoting tumor growth and metastasis. Indoleamine 2,3-dioxygenase 1 (IDO1), an immunosuppressive tryptophan-metabolizing enzyme, is upregulated in PDAC and degrades tryptophan (Trp) into kynurenine (Kyn), which is toxic to effector T cells and induces regulatory T cells (Treg) recruitment. Herein, we propose a concise strategy to construct a biocompatible, polyphenol-based, pH-responsive nanoparticle to co-deliver docetaxel (DTX) and NLG919 (an IDO1 inhibitor) to significantly enhance chemo-immunotherapy for PDAC by remodeling the TME. The DTX/NLG919-loaded nanoparticles (FPND) effectively elicited immunogenic cell death (ICD) in PDAC cells while limiting immunosuppressive Kyn production through IDO1 inhibition. FPND triggered an effective anti-tumor immune response, characterized by increased CD8<sup>+</sup> T cells infiltration and decreased Treg recruitment, leading to significant inhibition of subcutaneous tumor growth in KPC mice through a combination of chemotherapy and immunotherapy. Overall, FPND nanoparticles showed excellent anti-tumor efficacy as a PDAC therapeutic strategy with broad potential in precision medicine.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"380 ","pages":"Pages 615-629"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925001348","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is challenging to treat due to its difficulty in early diagnosis, highly invasive nature, and high metastatic potential. Currently, the primary treatments for PDAC are chemotherapy and immunotherapy. However, the abundance of extracellular matrix and immunosuppressive cells in the tumor microenvironment (TME) severely impedes the effectiveness of chemotherapy and immunotherapy, promoting tumor growth and metastasis. Indoleamine 2,3-dioxygenase 1 (IDO1), an immunosuppressive tryptophan-metabolizing enzyme, is upregulated in PDAC and degrades tryptophan (Trp) into kynurenine (Kyn), which is toxic to effector T cells and induces regulatory T cells (Treg) recruitment. Herein, we propose a concise strategy to construct a biocompatible, polyphenol-based, pH-responsive nanoparticle to co-deliver docetaxel (DTX) and NLG919 (an IDO1 inhibitor) to significantly enhance chemo-immunotherapy for PDAC by remodeling the TME. The DTX/NLG919-loaded nanoparticles (FPND) effectively elicited immunogenic cell death (ICD) in PDAC cells while limiting immunosuppressive Kyn production through IDO1 inhibition. FPND triggered an effective anti-tumor immune response, characterized by increased CD8+ T cells infiltration and decreased Treg recruitment, leading to significant inhibition of subcutaneous tumor growth in KPC mice through a combination of chemotherapy and immunotherapy. Overall, FPND nanoparticles showed excellent anti-tumor efficacy as a PDAC therapeutic strategy with broad potential in precision medicine.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
期刊最新文献
Glutathione and transglutaminase responsive janus gold nanorods for photoacoustic imaging-guided radiotherapy and chemodynamic therapy of tumors Poly(amino acid) nanoformulation of cyclin-dependent kinase 4 and 6 inhibitor for molecularly targeted immunotherapy in triple-negative breast cancer Ultrasound-triggered topical oxygen delivery enhances synergistic sonodynamic and antibody therapies against hypoxic gastric cancer Phage-inspired targeting of antibiotic-loaded polymeric micelles for enhanced therapeutic efficacy against monomicrobial sepsis Enhancement and characterization of nanoparticle diffusion in biological tissues by magnetic heating and oscillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1