DS0384 Alleviates Necrotizing Enterocolitis: Secretes N-carbamyl glutamic Acid and Participates in Lipid Metabolism and Lipid Peroxidation Processes.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of microbiology and biotechnology Pub Date : 2025-02-13 DOI:10.4014/jmb.2410.10040
Xiaofan Wei, Xiao Feng
{"title":"DS0384 Alleviates Necrotizing Enterocolitis: Secretes N-carbamyl glutamic Acid and Participates in Lipid Metabolism and Lipid Peroxidation Processes.","authors":"Xiaofan Wei, Xiao Feng","doi":"10.4014/jmb.2410.10040","DOIUrl":null,"url":null,"abstract":"<p><p>Necrotizing enterocolitis (NEC) is a life-threatening inflammatory bowel disease linked to gut microbiome dysbiosis. This study evaluates the efficacy of <i>Limosilactobacillus reuteri</i> strain DS0384, which secretes N-carbamyl glutamic acid (NCG), in modulating lipid peroxidation and inflammatory pathways in NEC. After pretreatment with DS0384, NEC mouse model was induced by gavage with bacteria-containing formula. NCG levels in the ileum were measured via CE-TOFMS metabolomic analysis. Additionally, rat small intestinal epithelial IEC-6 cells were exposed to lipopolysaccharide (LPS), treated with DS0384 DNA (D-DNA), and/or transfected to overexpress fatty acid synthase (FASN) and Toll-like receptor 4 (TLR4). Lipid peroxidation, peroxidation and inflammatory factors and NF-κB pathways were analysed. Immunofluorescence was used to measure the expression levels of ZO-1 and TLR4 in the ileum. DS0384 treatment significantly reduced more histological abnormalities, apoptosis, and TLR4 expression in NEC mice, while restoring NCG levels, downregulating FASN and inhibiting lipid peroxidation and inflammation. Pre-treatment with D-DNA maintained cell vitality, reduced apoptosis, and suppressed TLR4/NF-κB-mediated inflammasome activation. Overexpression of FASN or TLR4 reversed these effects. DS0384 is a promising therapeutic against NEC, enhancing gut barrier integrity and modulating inflammatory and oxidative responses, suggesting potential clinical benefits in preventing NEC progression.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2410040"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879329/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2410.10040","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Necrotizing enterocolitis (NEC) is a life-threatening inflammatory bowel disease linked to gut microbiome dysbiosis. This study evaluates the efficacy of Limosilactobacillus reuteri strain DS0384, which secretes N-carbamyl glutamic acid (NCG), in modulating lipid peroxidation and inflammatory pathways in NEC. After pretreatment with DS0384, NEC mouse model was induced by gavage with bacteria-containing formula. NCG levels in the ileum were measured via CE-TOFMS metabolomic analysis. Additionally, rat small intestinal epithelial IEC-6 cells were exposed to lipopolysaccharide (LPS), treated with DS0384 DNA (D-DNA), and/or transfected to overexpress fatty acid synthase (FASN) and Toll-like receptor 4 (TLR4). Lipid peroxidation, peroxidation and inflammatory factors and NF-κB pathways were analysed. Immunofluorescence was used to measure the expression levels of ZO-1 and TLR4 in the ileum. DS0384 treatment significantly reduced more histological abnormalities, apoptosis, and TLR4 expression in NEC mice, while restoring NCG levels, downregulating FASN and inhibiting lipid peroxidation and inflammation. Pre-treatment with D-DNA maintained cell vitality, reduced apoptosis, and suppressed TLR4/NF-κB-mediated inflammasome activation. Overexpression of FASN or TLR4 reversed these effects. DS0384 is a promising therapeutic against NEC, enhancing gut barrier integrity and modulating inflammatory and oxidative responses, suggesting potential clinical benefits in preventing NEC progression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
期刊最新文献
Corrigendum to: Effect of Light Regime on Candidatus Puniceispirillum marinum IMCC1322 in Nutrient-Replete Conditions. Amelioration of Astrocytic Dysfunction via AQP4/LRP1 Pathway by Zizania latifolia and Tricin in C6 Cells Exposed to Amyloid β and High-Dose Insulin and in Mice Treated with Scopolamine. Characterization of Protosiphon botryoides KNUA219 Isolated from Dokdo Island as a Potential Biofuel Resource. Comparative Effects of Probiotics and Paraprobiotics Derived from Lactiplantibacillus plantarum, Latilactobacillus sakei, and Limosilactobacillus reuteri in a DSS-Induced Ulcerative Colitis Mouse Model. Comparative Metabolomics of Clostridium acetobutylicum ATCC824 and its Engineered Strain, C. acetobutylicum DG1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1