{"title":"<i>N. sphaeroides</i> phycocyanin subunit Ns-α and Ns-β improve <i>C. elegans</i> antioxidative capacity <i>via</i> ROS-related regulation.","authors":"Xiaoyu Wu, Caiyun Zhang, Shuwen Zhou, Chao Cheng, Qing Fang","doi":"10.7717/peerj.18917","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress and damage to macromolecules due to free radicals such as reactive oxygen species (ROS) are commonly considered factors that can impair health. This study investigated the potential antioxidant properties of of two subunit proteins associated with the pigment-protein complex phycocyanin derived from <i>Nostoc sphaeroides</i> (Gexianmi). Bacterial expression vectors were separately constructed to induce the two engineering subunit proteins, Ns-α and Ns-β. These engineering proteins were then examined for their potential to enhance antioxidative capacity in <i>Caenorhabditis elegans</i>. Firstly, a proper concentration of the proteins Ns-α and Ns-β <i>in vitro</i> exhibited 2, 2-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity. Secondly, while there were no other observed effects on the nematodes, those treated with the proteins showed significant improvements in motility and reduced levels of lipofuscin compared to the control group. Furthermore, thirdly, the treated nematodes demonstrated increased resistance to oxidation, as evidenced by the higher survivals under oxidative conditions induced by 5 mM H<sub>2</sub>O<sub>2</sub>. Notably, the treated nematodes exhibited decline in endogenous ROS levels, and the redox-related genes, such as <i>SOD-3</i> and <i>CAT-1</i>, were down-regulated following consumption of the engineering proteins. Taken together, these findings suggest that engineering proteins Ns-α and Ns-β improve the antioxidative capacity of <i>C. elegans</i> by modulating ROS-related regulation, making them potential modulators in responding to oxidative stressors.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"13 ","pages":"e18917"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823651/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18917","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative stress and damage to macromolecules due to free radicals such as reactive oxygen species (ROS) are commonly considered factors that can impair health. This study investigated the potential antioxidant properties of of two subunit proteins associated with the pigment-protein complex phycocyanin derived from Nostoc sphaeroides (Gexianmi). Bacterial expression vectors were separately constructed to induce the two engineering subunit proteins, Ns-α and Ns-β. These engineering proteins were then examined for their potential to enhance antioxidative capacity in Caenorhabditis elegans. Firstly, a proper concentration of the proteins Ns-α and Ns-β in vitro exhibited 2, 2-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity. Secondly, while there were no other observed effects on the nematodes, those treated with the proteins showed significant improvements in motility and reduced levels of lipofuscin compared to the control group. Furthermore, thirdly, the treated nematodes demonstrated increased resistance to oxidation, as evidenced by the higher survivals under oxidative conditions induced by 5 mM H2O2. Notably, the treated nematodes exhibited decline in endogenous ROS levels, and the redox-related genes, such as SOD-3 and CAT-1, were down-regulated following consumption of the engineering proteins. Taken together, these findings suggest that engineering proteins Ns-α and Ns-β improve the antioxidative capacity of C. elegans by modulating ROS-related regulation, making them potential modulators in responding to oxidative stressors.
期刊介绍:
PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.