Enhancing active ingredient biosynthesis in Chinese herbal medicine: biotechnological strategies and molecular mechanisms.
IF 2.3 3区 生物学Q2 MULTIDISCIPLINARY SCIENCESPeerJPub Date : 2025-02-10eCollection Date: 2025-01-01DOI:10.7717/peerj.18914
Ziyi Guo, Ning Yang, Delin Xu
{"title":"Enhancing active ingredient biosynthesis in Chinese herbal medicine: biotechnological strategies and molecular mechanisms.","authors":"Ziyi Guo, Ning Yang, Delin Xu","doi":"10.7717/peerj.18914","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chinese herbal medicine (CHM) is a fundamental component of traditional Chinese medical practice, offering a rich source of natural remedies with significant therapeutic potential. However, the scarcity of active ingredients and complex extraction procedures present substantial challenges to their widespread clinical application. This review aims to address this gap by exploring the potential of modern biotechnological advancements in enhancing the biosynthesis of these valuable compounds.</p><p><strong>Methodology: </strong>The study takes a comprehensive approach, delving into the chemical composition of CHM's active ingredients and elucidating their biosynthetic pathways and molecular regulatory mechanisms. Additionally, it surveys recent progress in extraction methodologies and evaluates engineering strategies aimed at synthetic production. This multifaceted analysis forms the foundation for examining the role of synthetic biology in augmenting CHM's active ingredient synthesis.</p><p><strong>Results: </strong>Our examination provides insights into the intricate biosynthetic pathways governing the formation of CHM's active ingredients, as well as the complex molecular regulatory networks that underlie these processes. Furthermore, the review highlights advancements in extraction techniques, demonstrating their ability to streamline and enhance the isolation of these compounds. Engineering approaches for synthetic production, including metabolic engineering and synthetic biology tools, are assessed for their potential to overcome natural limitations and scale up production.</p><p><strong>Conclusions: </strong>By integrating insights from biosynthesis, molecular regulation, extraction methodologies, and synthetic biology, this review establishes a robust theoretical framework for enhancing the production of CHM's active ingredients. The proposed strategies and practical guidance aim to facilitate their broader utilization in modern medicine while promoting sustainability and accessibility within this invaluable medicinal heritage.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"13 ","pages":"e18914"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823656/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18914","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Chinese herbal medicine (CHM) is a fundamental component of traditional Chinese medical practice, offering a rich source of natural remedies with significant therapeutic potential. However, the scarcity of active ingredients and complex extraction procedures present substantial challenges to their widespread clinical application. This review aims to address this gap by exploring the potential of modern biotechnological advancements in enhancing the biosynthesis of these valuable compounds.
Methodology: The study takes a comprehensive approach, delving into the chemical composition of CHM's active ingredients and elucidating their biosynthetic pathways and molecular regulatory mechanisms. Additionally, it surveys recent progress in extraction methodologies and evaluates engineering strategies aimed at synthetic production. This multifaceted analysis forms the foundation for examining the role of synthetic biology in augmenting CHM's active ingredient synthesis.
Results: Our examination provides insights into the intricate biosynthetic pathways governing the formation of CHM's active ingredients, as well as the complex molecular regulatory networks that underlie these processes. Furthermore, the review highlights advancements in extraction techniques, demonstrating their ability to streamline and enhance the isolation of these compounds. Engineering approaches for synthetic production, including metabolic engineering and synthetic biology tools, are assessed for their potential to overcome natural limitations and scale up production.
Conclusions: By integrating insights from biosynthesis, molecular regulation, extraction methodologies, and synthetic biology, this review establishes a robust theoretical framework for enhancing the production of CHM's active ingredients. The proposed strategies and practical guidance aim to facilitate their broader utilization in modern medicine while promoting sustainability and accessibility within this invaluable medicinal heritage.
期刊介绍:
PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.