Mitochondrial transplantation improves outcomes after cardiac arrest and resuscitation in mice.

IF 6.5 1区 医学 Q1 CRITICAL CARE MEDICINE Resuscitation Pub Date : 2025-02-11 DOI:10.1016/j.resuscitation.2025.110535
Tomoaki Aoki, Yusuke Endo, Tai Yin, Jacob S Kazmi, Cyrus E Kuschner, Jun Hagiwara, Kanako Ito-Hagiwara, Eriko Nakamura, Lance B Becker, Kei Hayashida
{"title":"Mitochondrial transplantation improves outcomes after cardiac arrest and resuscitation in mice.","authors":"Tomoaki Aoki, Yusuke Endo, Tai Yin, Jacob S Kazmi, Cyrus E Kuschner, Jun Hagiwara, Kanako Ito-Hagiwara, Eriko Nakamura, Lance B Becker, Kei Hayashida","doi":"10.1016/j.resuscitation.2025.110535","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mitochondrial transplantation (MTx) is an emerging strategy for restoring cellular bioenergetics and mitigating ischemia-reperfusion (IR) injury. We previously demonstrated that MTx improved neurological outcomes and survival in a rat model of cardiac arrest (CA). However, the mechanisms underlying these benefits, particularly regarding immune modulation and transcriptional regulation, remain unclear.</p><p><strong>Methods: </strong>Adult C57BL/6 mice and Sprague-Dawley rats underwent CA and resuscitation protocols, followed by intravenous MTx with species-matched donor mitochondria. Survival and neurological outcomes were assessed up to 72 hours. Biodistribution and cellular uptake of fluorescent dye-labeled mitochondria were analyzed via in vivo imaging and flow cytometry. Gene expression related to mitochondrial dynamics, inflammation, and immune regulation was evaluated using qPCR.</p><p><strong>Results: </strong>MTx improved 72-hour survival (33.3% vs. 0%, P=0.006) and neurological scores compared to vehicle treatment. Reduced brain edema was observed in MTx-treated animals. Mitochondrial uptake was significantly enhanced in the brain and spleen post-CA, with key infiltrating and resident immune cell populations-including monocytes, macrophages, microglia, astrocytes, and endothelial cells-preferentially internalizing transplanted mitochondria. Circulating myeloid cells rapidly internalized functional mitochondria, with 53.9% uptake in MTx-treated CA animals versus 10.6% in controls (P<0.001). MTx also modulated immune profiles, reducing pro-inflammatory macrophages and enhancing cytotoxic T cell numbers. Gene expression analysis showed that MTx downregulated Fission 1, preserved Mitofusin 2, and upregulated protective genes, including Hmox1, Sirt1, and Entpd1.</p><p><strong>Conclusions: </strong>MTx improves outcomes after CA, accompanied by mitochondrial uptake by immune cells and redistribution to injured tissues. This process likely modulates immune responses, enhances mitochondrial fusion, and activates cytoprotective gene expression.</p>","PeriodicalId":21052,"journal":{"name":"Resuscitation","volume":" ","pages":"110535"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resuscitation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.resuscitation.2025.110535","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Mitochondrial transplantation (MTx) is an emerging strategy for restoring cellular bioenergetics and mitigating ischemia-reperfusion (IR) injury. We previously demonstrated that MTx improved neurological outcomes and survival in a rat model of cardiac arrest (CA). However, the mechanisms underlying these benefits, particularly regarding immune modulation and transcriptional regulation, remain unclear.

Methods: Adult C57BL/6 mice and Sprague-Dawley rats underwent CA and resuscitation protocols, followed by intravenous MTx with species-matched donor mitochondria. Survival and neurological outcomes were assessed up to 72 hours. Biodistribution and cellular uptake of fluorescent dye-labeled mitochondria were analyzed via in vivo imaging and flow cytometry. Gene expression related to mitochondrial dynamics, inflammation, and immune regulation was evaluated using qPCR.

Results: MTx improved 72-hour survival (33.3% vs. 0%, P=0.006) and neurological scores compared to vehicle treatment. Reduced brain edema was observed in MTx-treated animals. Mitochondrial uptake was significantly enhanced in the brain and spleen post-CA, with key infiltrating and resident immune cell populations-including monocytes, macrophages, microglia, astrocytes, and endothelial cells-preferentially internalizing transplanted mitochondria. Circulating myeloid cells rapidly internalized functional mitochondria, with 53.9% uptake in MTx-treated CA animals versus 10.6% in controls (P<0.001). MTx also modulated immune profiles, reducing pro-inflammatory macrophages and enhancing cytotoxic T cell numbers. Gene expression analysis showed that MTx downregulated Fission 1, preserved Mitofusin 2, and upregulated protective genes, including Hmox1, Sirt1, and Entpd1.

Conclusions: MTx improves outcomes after CA, accompanied by mitochondrial uptake by immune cells and redistribution to injured tissues. This process likely modulates immune responses, enhances mitochondrial fusion, and activates cytoprotective gene expression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Resuscitation
Resuscitation 医学-急救医学
CiteScore
12.00
自引率
18.50%
发文量
556
审稿时长
21 days
期刊介绍: Resuscitation is a monthly international and interdisciplinary medical journal. The papers published deal with the aetiology, pathophysiology and prevention of cardiac arrest, resuscitation training, clinical resuscitation, and experimental resuscitation research, although papers relating to animal studies will be published only if they are of exceptional interest and related directly to clinical cardiopulmonary resuscitation. Papers relating to trauma are published occasionally but the majority of these concern traumatic cardiac arrest.
期刊最新文献
Semi-autonomous drone delivering automated external defibrillators for real out-of-hospital cardiac arrest: A Danish feasibility study. Use of Machine Learning Models to Identify National Institutes of Health-Funded Cardiac Arrest Research. Artificial Intelligence in cardiopulmonary resuscitation: Driving awareness and debunking myths. Diastolic blood pressures and end tidal carbon dioxides during cardiopulmonary resuscitations and their association with outcomes in adult out-of-hospital cardiac arrest patients: a preplanned secondary analysis of the Augmented Medication CardioPulmonary Resuscitation (AMCPR) trial. Progress and challenges in implementing "Kids Save Lives" across Europe in 2025.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1