Landscape-level human disturbance results in loss and contraction of mammalian populations in tropical forests.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences PLoS Biology Pub Date : 2025-02-13 eCollection Date: 2025-02-01 DOI:10.1371/journal.pbio.3002976
Ilaria Greco, Lydia Beaudrot, Chris Sutherland, Simone Tenan, Chia Hsieh, Daniel Gorczynski, Douglas Sheil, Jedediah Brodie, Mohammad Firoz Ahmed, Jorge Ahumada, Rajan Amin, Megan Baker-Watton, Ramie Husneara Begum, Francesco Bisi, Robert Bitariho, Ahimsa Campos-Arceiz, Elildo A R Carvalho, Daniel Cornélis, Giacomo Cremonesi, Virgínia Londe de Camargos, Iariaella Elimanantsoa, Santiago Espinosa, Adeline Fayolle, Davy Fonteyn, Abishek Harihar, Harry Hilser, Alys Granados, Patrick A Jansen, Jayasilan Mohd-Azlan, Caspian Johnson, Steig Johnson, Dipankar Lahkar, Marcela Guimarães Moreira Lima, Matthew Scott Luskin, Marcelo Magioli, Emanuel H Martin, Adriano Martinoli, Ronaldo Gonçalves Morato, Badru Mugerwa, Lain E Pardo, Julia Salvador, Fernanda Santos, Cédric Vermeulen, Patricia C Wright, Francesco Rovero
{"title":"Landscape-level human disturbance results in loss and contraction of mammalian populations in tropical forests.","authors":"Ilaria Greco, Lydia Beaudrot, Chris Sutherland, Simone Tenan, Chia Hsieh, Daniel Gorczynski, Douglas Sheil, Jedediah Brodie, Mohammad Firoz Ahmed, Jorge Ahumada, Rajan Amin, Megan Baker-Watton, Ramie Husneara Begum, Francesco Bisi, Robert Bitariho, Ahimsa Campos-Arceiz, Elildo A R Carvalho, Daniel Cornélis, Giacomo Cremonesi, Virgínia Londe de Camargos, Iariaella Elimanantsoa, Santiago Espinosa, Adeline Fayolle, Davy Fonteyn, Abishek Harihar, Harry Hilser, Alys Granados, Patrick A Jansen, Jayasilan Mohd-Azlan, Caspian Johnson, Steig Johnson, Dipankar Lahkar, Marcela Guimarães Moreira Lima, Matthew Scott Luskin, Marcelo Magioli, Emanuel H Martin, Adriano Martinoli, Ronaldo Gonçalves Morato, Badru Mugerwa, Lain E Pardo, Julia Salvador, Fernanda Santos, Cédric Vermeulen, Patricia C Wright, Francesco Rovero","doi":"10.1371/journal.pbio.3002976","DOIUrl":null,"url":null,"abstract":"<p><p>Tropical forests hold most of Earth's biodiversity and a higher concentration of threatened mammals than other biomes. As a result, some mammal species persist almost exclusively in protected areas, often within extensively transformed and heavily populated landscapes. Other species depend on remaining remote forested areas with sparse human populations. However, it remains unclear how mammalian communities in tropical forests respond to anthropogenic pressures in the broader landscape in which they are embedded. As governments commit to increasing the extent of global protected areas to prevent further biodiversity loss, identifying the landscape-level conditions supporting wildlife has become essential. Here, we assessed the relationship between mammal communities and anthropogenic threats in the broader landscape. We simultaneously modeled species richness and community occupancy as complementary metrics of community structure, using a state-of-the-art community model parameterized with a standardized pan-tropical data set of 239 mammal species from 37 forests across 3 continents. Forest loss and fragmentation within a 50-km buffer were associated with reduced occupancy in monitored communities, while species richness was unaffected by them. In contrast, landscape-scale human density was associated with reduced mammal richness but not occupancy, suggesting that sensitive species have been extirpated, while remaining taxa are relatively unaffected. Taken together, these results provide evidence of extinction filtering within tropical forests triggered by anthropogenic pressure occurring in the broader landscape. Therefore, existing and new reserves may not achieve the desired biodiversity outcomes without concurrent investment in addressing landscape-scale threats.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 2","pages":"e3002976"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002976","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Tropical forests hold most of Earth's biodiversity and a higher concentration of threatened mammals than other biomes. As a result, some mammal species persist almost exclusively in protected areas, often within extensively transformed and heavily populated landscapes. Other species depend on remaining remote forested areas with sparse human populations. However, it remains unclear how mammalian communities in tropical forests respond to anthropogenic pressures in the broader landscape in which they are embedded. As governments commit to increasing the extent of global protected areas to prevent further biodiversity loss, identifying the landscape-level conditions supporting wildlife has become essential. Here, we assessed the relationship between mammal communities and anthropogenic threats in the broader landscape. We simultaneously modeled species richness and community occupancy as complementary metrics of community structure, using a state-of-the-art community model parameterized with a standardized pan-tropical data set of 239 mammal species from 37 forests across 3 continents. Forest loss and fragmentation within a 50-km buffer were associated with reduced occupancy in monitored communities, while species richness was unaffected by them. In contrast, landscape-scale human density was associated with reduced mammal richness but not occupancy, suggesting that sensitive species have been extirpated, while remaining taxa are relatively unaffected. Taken together, these results provide evidence of extinction filtering within tropical forests triggered by anthropogenic pressure occurring in the broader landscape. Therefore, existing and new reserves may not achieve the desired biodiversity outcomes without concurrent investment in addressing landscape-scale threats.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
期刊最新文献
GitHub enables collaborative and reproducible laboratory research. Landscape-level human disturbance results in loss and contraction of mammalian populations in tropical forests. Toll-1-dependent immune evasion induced by fungal infection leads to cell loss in the Drosophila brain. Correction: Diverse microtubule-targeted anticancer agents kill cells by inducing chromosome missegregation on multipolar spindles. Hippocampal damage disrupts the latent decision-making processes underlying approach-avoidance conflict processing in humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1