Immediate early splicing controls translation in activated T-cells and is mediated by hnRNPC2 phosphorylation.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Journal Pub Date : 2025-02-13 DOI:10.1038/s44318-025-00374-8
Mateusz Dróżdż, Luíza Zuvanov, Gopika Sasikumar, Debojit Bose, Franziska Bruening, Maria S Robles, Marco Preußner, Markus Wahl, Florian Heyd
{"title":"Immediate early splicing controls translation in activated T-cells and is mediated by hnRNPC2 phosphorylation.","authors":"Mateusz Dróżdż, Luíza Zuvanov, Gopika Sasikumar, Debojit Bose, Franziska Bruening, Maria S Robles, Marco Preußner, Markus Wahl, Florian Heyd","doi":"10.1038/s44318-025-00374-8","DOIUrl":null,"url":null,"abstract":"<p><p>The fast and transient induction of immediate early genes orchestrates the cellular response to various stimuli. These stimuli trigger phosphorylation cascades that promote immediate early gene transcription independent of de novo protein synthesis. Here we show that the same phosphorylation cascades also target the splicing machinery, inducing an analogous splicing switch that we call immediate early splicing (IES). We characterize hnRNPC2-controlled IES, which depends on the MEK-ERK pathway and the T cell-specific kinase PKCθ. This splicing switch mainly targets components of the translation machinery, such as mRNAs encoding ribosomal proteins and eIF5A. Inducing the eIF5A IES protein variant is by itself sufficient to reduce global translation, and consistently, we observe reduced de novo protein synthesis early after T cell activation. We suggest that immediate early splicing and the ensuing transient decrease in translation efficiency help to coordinate the extensive changes in gene expression during T cell activation. Together, these findings set a paradigm for fast and transient alternative splicing in the immediate cellular response to activation, and provide evidence for its functional relevance during T-cell stimulation.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00374-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The fast and transient induction of immediate early genes orchestrates the cellular response to various stimuli. These stimuli trigger phosphorylation cascades that promote immediate early gene transcription independent of de novo protein synthesis. Here we show that the same phosphorylation cascades also target the splicing machinery, inducing an analogous splicing switch that we call immediate early splicing (IES). We characterize hnRNPC2-controlled IES, which depends on the MEK-ERK pathway and the T cell-specific kinase PKCθ. This splicing switch mainly targets components of the translation machinery, such as mRNAs encoding ribosomal proteins and eIF5A. Inducing the eIF5A IES protein variant is by itself sufficient to reduce global translation, and consistently, we observe reduced de novo protein synthesis early after T cell activation. We suggest that immediate early splicing and the ensuing transient decrease in translation efficiency help to coordinate the extensive changes in gene expression during T cell activation. Together, these findings set a paradigm for fast and transient alternative splicing in the immediate cellular response to activation, and provide evidence for its functional relevance during T-cell stimulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
期刊最新文献
Local weakening of cell-extracellular matrix adhesion triggers basal epithelial tissue folding. The MAST kinase KIN-4 carries out mitotic entry functions of Greatwall in C. elegans. Immediate early splicing controls translation in activated T-cells and is mediated by hnRNPC2 phosphorylation. Modulation of tumor inflammatory signaling and drug sensitivity by CMTM4. The barley MLA13-AVRA13 heterodimer reveals principles for immunoreceptor recognition of RNase-like powdery mildew effectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1