Dietary Branched-Chain Amino Acids Modify Postinfarct Cardiac Remodeling and Function in the Murine Heart.

IF 5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of the American Heart Association Pub Date : 2025-02-14 DOI:10.1161/JAHA.124.037637
Daniel C Nguyen, Collin K Wells, Madison S Taylor, Yania Martinez-Ondaro, Richa Singhal, Kenneth R Brittian, Robert E Brainard, Joseph B Moore, Bradford G Hill
{"title":"Dietary Branched-Chain Amino Acids Modify Postinfarct Cardiac Remodeling and Function in the Murine Heart.","authors":"Daniel C Nguyen, Collin K Wells, Madison S Taylor, Yania Martinez-Ondaro, Richa Singhal, Kenneth R Brittian, Robert E Brainard, Joseph B Moore, Bradford G Hill","doi":"10.1161/JAHA.124.037637","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Branched-chain amino acids (BCAAs), which are derived from the diet, are markedly elevated in cardiac tissue following myocardial infarction (MI). Nevertheless, it remains unclear whether dietary BCAA levels influence post-MI remodeling.</p><p><strong>Methods: </strong>To investigate the impact of dietary BCAAs on cardiac remodeling and function after MI, we fed mice a low or a high BCAA diet for 2 weeks before MI and for 4 weeks after MI. Cardiac structural and functional changes were evaluated by echocardiography, gravimetry, and histopathological analyses. Immunoblotting was used to evaluate the effects of BCAAs on isolated cardiac myofibroblast differentiation.</p><p><strong>Results: </strong>The low BCAA diet decreased circulating BCAA concentrations by >2-fold when compared with the high BCAA diet. Although neither body weights nor heart masses were different in female mice fed the custom diets, male mice fed the high BCAA diet had significantly higher body and heart masses than those on the low BCAA diet. The low BCAA diet preserved stroke volume and cardiac output after MI, whereas the high BCAA diet promoted progressive decreases in cardiac function. Although BCAAs were required for myofibroblast differentiation in vitro, cardiac fibrosis, scar collagen topography, and cardiomyocyte cross-sectional area were not different between the dietary groups; however, male mice fed the high BCAA diet had longer cardiomyocytes and higher capillary density compared with the low BCAA group.</p><p><strong>Conclusions: </strong>A low BCAA diet mitigates eccentric cardiomyocyte remodeling and loss of cardiac function after MI in mice, with dietary effects more prominent in males.</p>","PeriodicalId":54370,"journal":{"name":"Journal of the American Heart Association","volume":" ","pages":"e037637"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Heart Association","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/JAHA.124.037637","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Branched-chain amino acids (BCAAs), which are derived from the diet, are markedly elevated in cardiac tissue following myocardial infarction (MI). Nevertheless, it remains unclear whether dietary BCAA levels influence post-MI remodeling.

Methods: To investigate the impact of dietary BCAAs on cardiac remodeling and function after MI, we fed mice a low or a high BCAA diet for 2 weeks before MI and for 4 weeks after MI. Cardiac structural and functional changes were evaluated by echocardiography, gravimetry, and histopathological analyses. Immunoblotting was used to evaluate the effects of BCAAs on isolated cardiac myofibroblast differentiation.

Results: The low BCAA diet decreased circulating BCAA concentrations by >2-fold when compared with the high BCAA diet. Although neither body weights nor heart masses were different in female mice fed the custom diets, male mice fed the high BCAA diet had significantly higher body and heart masses than those on the low BCAA diet. The low BCAA diet preserved stroke volume and cardiac output after MI, whereas the high BCAA diet promoted progressive decreases in cardiac function. Although BCAAs were required for myofibroblast differentiation in vitro, cardiac fibrosis, scar collagen topography, and cardiomyocyte cross-sectional area were not different between the dietary groups; however, male mice fed the high BCAA diet had longer cardiomyocytes and higher capillary density compared with the low BCAA group.

Conclusions: A low BCAA diet mitigates eccentric cardiomyocyte remodeling and loss of cardiac function after MI in mice, with dietary effects more prominent in males.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Heart Association
Journal of the American Heart Association CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
9.40
自引率
1.90%
发文量
1749
审稿时长
12 weeks
期刊介绍: As an Open Access journal, JAHA - Journal of the American Heart Association is rapidly and freely available, accelerating the translation of strong science into effective practice. JAHA is an authoritative, peer-reviewed Open Access journal focusing on cardiovascular and cerebrovascular disease. JAHA provides a global forum for basic and clinical research and timely reviews on cardiovascular disease and stroke. As an Open Access journal, its content is free on publication to read, download, and share, accelerating the translation of strong science into effective practice.
期刊最新文献
Age-Related Outcomes of Valve-in-Valve Transcatheter Aortic Valve Replacement for Structural Valve Deterioration. Anticoagulation in Atrial Fibrillation With Valvular Heart Disease. Correction to: Cardiopulmonary Exercise Test Interpretation Across the Lifespan in Congenital Heart Disease: A Scientific Statement From the American Heart Association. Crème de la Conference: 8th World Congress of Pediatric Cardiology and Cardiac Surgery-WCPCCS 2023. Dietary Branched-Chain Amino Acids Modify Postinfarct Cardiac Remodeling and Function in the Murine Heart.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1