Harmonizing population health data into OMOP common data model: a demonstration using COVID-19 sero-surveillance data from Nairobi Urban Health and Demographic Surveillance System.

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES Frontiers in digital health Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI:10.3389/fdgth.2025.1423621
Michael Ochola, Sylvia Kiwuwa-Muyingo, Tathagata Bhattacharjee, David Amadi, Maureen Ng'etich, Damazo Kadengye, Henry Owoko, Boniface Igumba, Jay Greenfield, Jim Todd, Agnes Kiragga
{"title":"Harmonizing population health data into OMOP common data model: a demonstration using COVID-19 sero-surveillance data from Nairobi Urban Health and Demographic Surveillance System.","authors":"Michael Ochola, Sylvia Kiwuwa-Muyingo, Tathagata Bhattacharjee, David Amadi, Maureen Ng'etich, Damazo Kadengye, Henry Owoko, Boniface Igumba, Jay Greenfield, Jim Todd, Agnes Kiragga","doi":"10.3389/fdgth.2025.1423621","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Observational health data are collected in different formats and structures, making it challenging to analyze with common tools. The Observational Medical Outcome Partnership (OMOP) Common Data Model (CDM) is a standardized data model that can harmonize observational health data.</p><p><strong>Objective: </strong>This paper demonstrates the use of the OMOP CDM to harmonize COVID-19 sero-surveillance data from the Nairobi Urban Health and Demographic Surveillance System (HDSS).</p><p><strong>Methods: </strong>In this study, we extracted data from the Nairobi Urban HDSS COVID-19 sero-surveillance database and mapped it to the OMOP CDM. We used open-source Observational Health Data Sciences and Informatics (OHDSI) tools like WhiteRabbit, RabbitInAHat, and USAGI. The steps included data profiling (scanning), mapping the vocabularies using the offline USAGI and online ATHENA, and designing the extract, transform, and load (ETL) process using RabbitInAHat. The ETL process was implemented using Pentaho Data Integration community edition software and structured query language (SQL). The target OMOP CDM can now be used to analyze the prevalence of COVID-19 antibodies in the Nairobi Urban HDSS population.</p><p><strong>Results: </strong>We successfully mapped the Nairobi Urban HDSS COVID-19 sero-surveillance data to the OMOP CDM. The standardized dataset included information on demographics, COVID-19 symptoms, vaccination, and COVID-19 antibody test results.</p><p><strong>Conclusions: </strong>The OMOP CDM is a valuable tool for harmonizing observational health data. Using the OMOP CDM facilitates the sharing and analysis of observational health data, leading to a better understanding of disease conditions and trends and improving evidence-based population health strategies.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"7 ","pages":"1423621"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2025.1423621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Observational health data are collected in different formats and structures, making it challenging to analyze with common tools. The Observational Medical Outcome Partnership (OMOP) Common Data Model (CDM) is a standardized data model that can harmonize observational health data.

Objective: This paper demonstrates the use of the OMOP CDM to harmonize COVID-19 sero-surveillance data from the Nairobi Urban Health and Demographic Surveillance System (HDSS).

Methods: In this study, we extracted data from the Nairobi Urban HDSS COVID-19 sero-surveillance database and mapped it to the OMOP CDM. We used open-source Observational Health Data Sciences and Informatics (OHDSI) tools like WhiteRabbit, RabbitInAHat, and USAGI. The steps included data profiling (scanning), mapping the vocabularies using the offline USAGI and online ATHENA, and designing the extract, transform, and load (ETL) process using RabbitInAHat. The ETL process was implemented using Pentaho Data Integration community edition software and structured query language (SQL). The target OMOP CDM can now be used to analyze the prevalence of COVID-19 antibodies in the Nairobi Urban HDSS population.

Results: We successfully mapped the Nairobi Urban HDSS COVID-19 sero-surveillance data to the OMOP CDM. The standardized dataset included information on demographics, COVID-19 symptoms, vaccination, and COVID-19 antibody test results.

Conclusions: The OMOP CDM is a valuable tool for harmonizing observational health data. Using the OMOP CDM facilitates the sharing and analysis of observational health data, leading to a better understanding of disease conditions and trends and improving evidence-based population health strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
背景:观察性健康数据的收集格式和结构各不相同,因此使用通用工具进行分析具有挑战性。观察性医疗结果合作组织(OMOP)通用数据模型(CDM)是一种标准化数据模型,可以统一观察性健康数据:本文展示了如何使用 OMOP CDM 来统一来自内罗毕城市健康与人口监测系统(HDSS)的 COVID-19 血清监测数据:在这项研究中,我们从内罗毕城市 HDSS COVID-19 血清监测数据库中提取数据,并将其映射到 OMOP CDM。我们使用了开源的观察健康数据科学与信息学(Observational Health Data Sciences and Informatics,OHDSI)工具,如WhiteRabbit、RabbitInAHat和USAGI。这些步骤包括数据剖析(扫描)、使用离线 USAGI 和在线 ATHENA 映射词汇表,以及使用 RabbitInAHat 设计提取、转换和加载(ETL)流程。ETL 流程使用 Pentaho 数据集成社区版软件和结构化查询语言 (SQL) 实现。目标 OMOP CDM 现在可用于分析 COVID-19 抗体在内罗毕城市 HDSS 人口中的流行情况:我们成功地将内罗毕城市 HDSS COVID-19 血清监测数据映射到了 OMOP CDM。标准化数据集包括人口统计学、COVID-19 症状、疫苗接种和 COVID-19 抗体检测结果等信息:结论:OMOP CDM 是统一观察性健康数据的重要工具。使用 OMOP CDM 可促进健康观察数据的共享和分析,从而更好地了解疾病状况和趋势,改进循证人口健康战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Comparative analysis of ChatGPT and Gemini (Bard) in medical inquiry: a scoping review. Unlocking the potential of serious games for rehabilitation in low and middle-income countries: addressing potential and current limitations. START-the Swiss tele-assisted rehabilitation and training program to support transition from inpatient to outpatient care in the subacute phase after a stroke: feasibility, safety and performance evaluation. Voice EHR: introducing multimodal audio data for health. Beyond the current state of just-in-time adaptive interventions in mental health: a qualitative systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1