Scalable Manufacturing of Low-Symmetry Plasmonic Nanospindle Arrays with Tunable Surface Lattice Resonance.

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-02-25 Epub Date: 2025-02-14 DOI:10.1021/acsnano.4c18423
Hongyan Li, Jingyi Zhao, Yazi Wang, Haitao Liu, Qianyun Chen, Yilin Bao, Miaoen Zhou, Yue Li, Yutao Sang, Fan Yang, Zhihong Nie
{"title":"Scalable Manufacturing of Low-Symmetry Plasmonic Nanospindle Arrays with Tunable Surface Lattice Resonance.","authors":"Hongyan Li, Jingyi Zhao, Yazi Wang, Haitao Liu, Qianyun Chen, Yilin Bao, Miaoen Zhou, Yue Li, Yutao Sang, Fan Yang, Zhihong Nie","doi":"10.1021/acsnano.4c18423","DOIUrl":null,"url":null,"abstract":"<p><p>Geometry-dependent plasmonic surface lattice resonances (SLRs) have garnered great interest across a range of applications, including nanolasers, sensors, photocatalysis, and nonlinear optics. However, the rational fabrication of high-quality, low-symmetry, plasmonic nanoparticle arrays over large areas remains challenging. Herein, we report a versatile strategy for the scalable fabrication of centimeter-scale plasmonic nanospindle (NS) arrays with high positional and orientational precision. Our approach combines solvent-assisted soft lithography with in situ reduction of metal precursors, enabling the cost-effective production of large-area and well-ordered NS arrays without the need of specialized equipment. The Au NS arrays exhibit superior SLRs with a ultranarrow line width of 3.9 nm and a quality factor (<i>Q</i>-factor) of 309. The aspect ratio and lattice geometry of the NSs can be precisely tuned by applying mechanical strain to the stretchable elastomeric template, thus, allowing us to customize the SLR performance across the near-infrared spectrum. This technique enables the precise engineering of anisotropic nanoparticle arrays in a standard chemistry laboratory, opening new possibilities for advanced plasmonic devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"7391-7400"},"PeriodicalIF":16.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18423","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Geometry-dependent plasmonic surface lattice resonances (SLRs) have garnered great interest across a range of applications, including nanolasers, sensors, photocatalysis, and nonlinear optics. However, the rational fabrication of high-quality, low-symmetry, plasmonic nanoparticle arrays over large areas remains challenging. Herein, we report a versatile strategy for the scalable fabrication of centimeter-scale plasmonic nanospindle (NS) arrays with high positional and orientational precision. Our approach combines solvent-assisted soft lithography with in situ reduction of metal precursors, enabling the cost-effective production of large-area and well-ordered NS arrays without the need of specialized equipment. The Au NS arrays exhibit superior SLRs with a ultranarrow line width of 3.9 nm and a quality factor (Q-factor) of 309. The aspect ratio and lattice geometry of the NSs can be precisely tuned by applying mechanical strain to the stretchable elastomeric template, thus, allowing us to customize the SLR performance across the near-infrared spectrum. This technique enables the precise engineering of anisotropic nanoparticle arrays in a standard chemistry laboratory, opening new possibilities for advanced plasmonic devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可调谐表面晶格共振的低对称性等离子体纳米主轴阵列的可扩展制造。
几何相关的等离子体表面晶格共振(slr)在包括纳米激光器、传感器、光催化和非线性光学在内的一系列应用中引起了极大的兴趣。然而,在大面积上合理地制造高质量、低对称性的等离子体纳米粒子阵列仍然是一个挑战。在此,我们报告了一种具有高定位和定向精度的厘米级等离子体纳米主轴(NS)阵列的可扩展制造策略。我们的方法结合了溶剂辅助软光刻和金属前驱体的原位还原,使大面积有序的NS阵列的生产具有成本效益,而不需要专门的设备。Au NS阵列的超窄线宽为3.9 nm,品质因子(Q-factor)为309,具有优异的单反性能。通过对可拉伸弹性体模板施加机械应变,可以精确调整NSs的长宽比和晶格几何形状,从而使我们能够在近红外光谱范围内定制单反性能。这项技术使各向异性纳米粒子阵列在标准化学实验室的精确工程,为先进的等离子体器件开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Impact of Contact Gating on Scaling of Monolayer 2D Transistors Using a Symmetric Dual-Gate Structure Grain Boundary Triggered Basal Plane Active Sites in Mn-Doped Pd Nanosheets for Boosting Oxygen Reduction Reaction Ultrathin Amorphous p-Type Tellurium Oxide Films Enabled by Cryogenic Deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1