Christian Kramer, John Chodera, Kelly L Damm-Ganamet, Michael K Gilson, Judith Günther, Uta Lessel, Richard A Lewis, David Mobley, Eva Nittinger, Adam Pecina, Matthieu Schapira, W Patrick Walters
{"title":"The Need for Continuing Blinded Pose- and Activity Prediction Benchmarks.","authors":"Christian Kramer, John Chodera, Kelly L Damm-Ganamet, Michael K Gilson, Judith Günther, Uta Lessel, Richard A Lewis, David Mobley, Eva Nittinger, Adam Pecina, Matthieu Schapira, W Patrick Walters","doi":"10.1021/acs.jcim.4c02296","DOIUrl":null,"url":null,"abstract":"<p><p>Computational tools for structure-based drug design (SBDD) are widely used in drug discovery and can provide valuable insights to advance projects in an efficient and cost-effective manner. However, despite the importance of SBDD to the field, the underlying methodologies and techniques have many limitations. In particular, binding pose and activity predictions (P-AP) are still not consistently reliable. We strongly believe that a limiting factor is the lack of a widely accepted and established community benchmarking process that independently assesses the performance and drives the development of methods, similar to the CASP benchmarking challenge for protein structure prediction. Here, we provide an overview of P-AP, unblinded benchmarking data sets, and blinded benchmarking initiatives (concluded and ongoing) and offer a perspective on learnings and the future of the field. To accelerate a breakthrough on the development of novel P-AP methods, it is necessary for the community to establish and support a long-term benchmark challenge that provides nonbiased training/test/validation sets, a systematic independent validation, and a forum for scientific discussions.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02296","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Computational tools for structure-based drug design (SBDD) are widely used in drug discovery and can provide valuable insights to advance projects in an efficient and cost-effective manner. However, despite the importance of SBDD to the field, the underlying methodologies and techniques have many limitations. In particular, binding pose and activity predictions (P-AP) are still not consistently reliable. We strongly believe that a limiting factor is the lack of a widely accepted and established community benchmarking process that independently assesses the performance and drives the development of methods, similar to the CASP benchmarking challenge for protein structure prediction. Here, we provide an overview of P-AP, unblinded benchmarking data sets, and blinded benchmarking initiatives (concluded and ongoing) and offer a perspective on learnings and the future of the field. To accelerate a breakthrough on the development of novel P-AP methods, it is necessary for the community to establish and support a long-term benchmark challenge that provides nonbiased training/test/validation sets, a systematic independent validation, and a forum for scientific discussions.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.