{"title":"Simulating Non-Markovian Quantum Dynamics on NISQ Computers Using the Hierarchical Equations of Motion.","authors":"Xiaohan Dan, Eitan Geva, Victor S Batista","doi":"10.1021/acs.jctc.4c01565","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum computing offers promising new avenues for tackling the long-standing challenge of simulating the quantum dynamics of complex chemical systems, particularly open quantum systems coupled to external baths. However, simulating such nonunitary dynamics on quantum computers is challenging since quantum circuits are specifically designed to carry out unitary transformations. Furthermore, chemical systems are often strongly coupled to the surrounding environment, rendering the dynamics non-Markovian and beyond the scope of Markovian quantum master equations like Lindblad or Redfield. In this work, we introduce a quantum algorithm designed to simulate non-Markovian dynamics of open quantum systems. Our approach enables the implementation of arbitrary quantum master equations on noisy intermediate-scale quantum (NISQ) computers. We illustrate the method as applied in conjunction with the numerically exact hierarchical equations of motion (HEOM) method. The effectiveness of the resulting quantum HEOM algorithm is demonstrated as applied to simulations of the non-Lindbladian electronic energy and charge transfer dynamics in models of the carotenoid-porphyrin-C<sub>60</sub> molecular triad dissolved in tetrahydrofuran and the Fenna-Matthews-Olson complex.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01565","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum computing offers promising new avenues for tackling the long-standing challenge of simulating the quantum dynamics of complex chemical systems, particularly open quantum systems coupled to external baths. However, simulating such nonunitary dynamics on quantum computers is challenging since quantum circuits are specifically designed to carry out unitary transformations. Furthermore, chemical systems are often strongly coupled to the surrounding environment, rendering the dynamics non-Markovian and beyond the scope of Markovian quantum master equations like Lindblad or Redfield. In this work, we introduce a quantum algorithm designed to simulate non-Markovian dynamics of open quantum systems. Our approach enables the implementation of arbitrary quantum master equations on noisy intermediate-scale quantum (NISQ) computers. We illustrate the method as applied in conjunction with the numerically exact hierarchical equations of motion (HEOM) method. The effectiveness of the resulting quantum HEOM algorithm is demonstrated as applied to simulations of the non-Lindbladian electronic energy and charge transfer dynamics in models of the carotenoid-porphyrin-C60 molecular triad dissolved in tetrahydrofuran and the Fenna-Matthews-Olson complex.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.